
This
g.

traint
sed

used to
level
Push-button Synthesis

or,

Usingdc_perl to do_the_right_thing

Kurt Baty

WSFDB Consulting
26 Hill Street

Medway MA 02053
Phone: +1.508.429.4198
Email: kurt@wsfdb.com

Steve Golson

Trilobyte Systems
33 Sunset Road

Carlisle MA 01741
Phone: +1.978.369.9669
Fax: +1.978.371.9964

Email: sgolson@trilobyte.com

ABSTRACT

We have developed a methodology to automatically synthesize large hierarchical designs.
methodology combines the advantages of bottom-up compilation with top-down rebudgetin

Starting with only the Verilog source code, all required makefiles, synthesis scripts, and cons
files are automatically derived. An overconstraining leaf module time-budgeting method is u
for initial synthesis.

For subsequent synthesis runs, a top-level constraint file (perhaps manually generated) is
automatically create constraints for leaf modules. Timing information is extracted from top-
timing reports. True timing budgets can be generated while avoiding the limitations of
characterize .

their

nces

s

 while

t.
1.0 Introduction

There are several basic techniques for compilation of large hierarchical designs [1]. All have
advantages and disadvantages.

1.1 Top-down hierarchical compile
This methodology uses a top-level constraint file and a simple hierarchicalcompile to generate
the entire design at once. Reference [12] describes this methodology.

+ Good quality of results due to optimization over the entire design

+ Only needs top-level constraints

- Long compile times

- Incremental changes require complete recompilation

- Requiresuniquify for multiply-instantiated designs

- Limitations on design style (single clock, etc.)

1.2 Bottom-up compile
This methodology compiles leaf modules using individual scripts and constraint files. Refere
[7] and [10] describes this methodology.

+ Clarity and simplicity of individual scripts

+ Good results for many designs

+ Incremental changes can be compiled quickly

- Top-level critical paths may not be leaf module critical paths

- Manual updating of scripts and constraints is tedious

- Limitations on design style (restrictions on combinational Mealy paths, etc.)

The use of default scripts and constraints with the UNIXmake command was first presented in
[2]. Usingmake with standard suffix rules was described in [3] and [4]. This simplified the
compile process, and becausemake handles all the design hierarchical dependencies, module
that have not been modified are not recompiled, thus saving time.

1.3 Bottom-up compile with top-down constraint propagation
Recently many techniques have been described for using a bottom-up compilation strategy
automating the updating of scripts and constraints.

References [6], [8], [11] discuss this strategy. However all usecharacterize to propagate
timing constraints down the hierarchy, thus they are subject to the classic “ping-pong” effec
SNUG ‘98 2 Usingdc_perl to do_the_right_thing

s,

l
lock

ach

ns

our

ve all

y

2.0 What is the right thing to do?

What we would like is a technique that combines the best of these methodologies!

+ A static predictable re-synthesis state

+ Clarity and simplicity of individual scripts

+ Automatic generation of scripts and constraints

+ Automatic updating of constraints using true time budgeting

+ Good results for all types of designs (many clocks, multicycle paths, multiple Mealy path
etc.)

We call this methodologydo_the_right_thing .

Thedo_the_right_thing command is an extension ofdc_perl which is described in [9].

2.1 Automatic generation of default scripts and constraints
Given only Verilog source code,do_the_right_thing will automatically perform initial
compilation using an overconstraining leaf module bottom-up compile strategy [10]. Minima
input from the user is required (top-level module name, target library, operating conditions, c
speed).

The design hierarchy is extracted automatically. Script and constraint files are created for e
module in the hierarchy. AMakefile is generated which has all the proper dependencies.

The result is an initial full-chip synthesis requiring very little input from the user. Many desig
will have successful results from this methodology [10].

2.2 Automatic time budgeting
A top-level constraint file specifies “hard” timing requirements at the inputs and outputs of y
chip. Wireload models, operating conditions, clocks, and perhaps point-to-point timing
exceptions (multicycle paths and false paths) are also given. By runningreport_timing with
these top-level constraints applied, the true critical paths of the chip are reported.

If your design is not meeting its timing constraints, the leaf module constraint files must be
updated. Previous efforts to propagate top-level constraints downward to the leaf modules ha
used thecharacterize command. We chose to usereport_timing which allows true
time budgeting to be accomplished.

Every pin in your design (except the pins of leaf cells) represents the port of a subdesign. B
executingreport_timing -through thepin you get a timing report which describes the
critical path through that pin (which represents the port of a subdesign).
SNUG ‘98 3 Usingdc_perl to do_the_right_thing

th

design.

tance.

eady

nd
logy.

onal

he

ade to
ace is

iod,
[10].
The total delay of the path may have positive or negative slack. Each subdesign that the pa
traverses provides some percentage of the total delay. Atime budget for this path is created by
normalizing the total delay to the desired clock period, with each subdesign allocated a
percentage of the budget according to the percentage of the actual delay used by that sub

Now the input delay or output delay for the subdesign port corresponding tothepin may be set.
If a subdesign is multiply instantiated, use the worst constraint of the path through each ins

For top-level critical paths this will tighten constraints in leaf modules. For paths that are alr
meeting timing (positive slack), the leaf module constraints will be relaxed, allowing area
reduction.

do_the_right_thing will take a top-level constraint file along with a gate-level netlist, a
automatically generate new leaf module constraint files using this time budgeting methodo

+ Top-level critical paths are also the leaf module critical paths

+ Works for designs with any number of subdesigns in the critical path (multiple combinati
or Mealy modules)

+ Converges on a timing budget with no “ping-pong” effect

+ Maintains all the advantages ofmake-driven bottom-up compile

+ Input drive strengths and output loads can also be derived fromreport_timing

3.0 Gory details

3.1dc_perl

dc_perl uses the Perl interpreter as a “wrapper” arounddc_shell , thus allowing powerful
extensions todc_shell to be created.dc_shell commands can be generated by Perl, and t
results analyzed by Perl in real time (not post-processed). Furtherdc_shell commands can be
algorithmically generated by Perl based on the given results.

Since its first description last year [9] a number of bug fixes and enhancements have been m
dc_perl . In particular support for Solaris and HP-UX has been added, and the user interf
much more robust.

3.2 Creation ofenvironment file
Theenvironment file specifies chip-wide defaults such as operating conditions, clock per
nominal drive strength of module inputs, and nominal loading on module inputs and outputs
SNUG ‘98 4 Usingdc_perl to do_the_right_thing

do_the_right_thing tests to see if anenvironment file exists in the current directory. If
not, one is automatically created by suggesting default values and asking the user for
confirmation:

well there’s no environment so I guess we have to make one!
Loading db file ‘/RAID/tools/asic_libs/vlsi/vsc883.db’
{}
Operating Conditions:

 Name Library Process Temp Volt Interconnect Model

 TYP vsc883 1.00 25.00 3.30 balanced_tree
 TYP_3V vsc883 1.00 25.00 3.00 balanced_tree
 MAX_3V vsc883 1.25 150.00 2.70 balanced_tree
 MIN_3V vsc883 0.76 -50.00 3.30 best_case_tree
 WCMAX vsc883 1.25 150.00 3.00 balanced_tree
 BCMIN vsc883 0.76 -50.00 3.60 best_case_tree

The operating conditions you want set are [MAX_3V] : WCMAX
The default clock period you want is [10] :
A good drive nand gate in your library is [nd02d2] :
The cells-to-gates ratio for your library has a value of [1] :

A typical environment file looks like:

/*##*/
/*# #*/
/*# This environment file was generated by dc_perl for the design #*/
/*# your_design_name #*/
/*# #*/
/*##*/

set_operating_conditions WCMAX
set_wire_load -mode segmented
suppress_errors = suppress_errors + {EQN-10 UID-401}
default_clock_period = 10 * (1 - .20) /* 20% timing margin */
set_driving_cell -cell nd02d2 all_inputs()
set_load 4 * load_of(vsc883/nd02d2/a1) all_inputs()
set_load 20 * load_of(vsc883/nd02d2/a1) all_outputs()
max_transition 6.0
cells_to_gates_ratio = 1
SNUG ‘98 5 Usingdc_perl to do_the_right_thing

n:

n

3.3 Creation ofMakefile

An implicit rule and assumption in this design methodology is a strict suffix rule oriented file
naming convention. That is, eachmodule_name.v file contains only one Verilog module
declaration asmodule_name . This allows theMakefile to use simple suffix rules [3] [4]. All
of the suffixes are defined bydo_the_right_thing and may be changed at the user’s optio

$hld_langage = "verilog";
$hdl_suffix = ".v";
$constraint_file_suffix = ".const";
$script_file_suffix = ".script";
$gate_level_file_suffix = ".psv";
$synthesis_log_file_suffix = ".synlog";
$design_ware_or_template_suffix = ".dwt";

Themake suffix rules:

.SUFFIXES: .v .const .script .db .dwt .psv .synlog

.v.const:
touch $*.const

.const.script:
touch $*.script

.script.db:
dc_shell -f $*.script > $*.synlog

.v.dwt:
dc_shell -f $*.script > $*.synlog

The determination of design dependencies is done recursively from each point in the desig
hierarchy.

building make dependences for design fifo
 the design "fifo" has a sub-design "fifo_ctrl"
 the design "fifo_ctrl" has a sub-design "fifo_ctrl_decoder"
 the design "fifo_ctrl_decoder" has no fifo_ctrl_decoder.const file creating one

the design "fifo_ctrl_decoder" has no fifo_ctrl_decoder.script file creating one
 the design "fifo_ctrl" has no fifo_ctrl.const file creating one
 the design "fifo_ctrl" has no fifo_ctrl.script file creating one
 the design "fifo" has a sub-design "fifo_mux"
 the design "fifo_mux" has no fifo_mux.const file creating one
 the design "fifo_mux" has no fifo_mux.script file creating one
 the design "fifo" has a sub-design "fifo_row"
 the design "fifo_row" has no fifo_row.const file creating one
 the design "fifo_row" has no fifo_row.script file creating one
 the design "fifo" has no fifo.const file creating one
 the design "fifo" has no fifo.script file creating one
SNUG ‘98 6 Usingdc_perl to do_the_right_thing

At each point in the hierarchy all sub-designs must be found. The Perl subroutine
&get_sub_design_list() returns a list of the sub-designs of the current design. This
shows thedc_shell command invoked by Perl:

<current_design>_sub_designs = {};

foreach(each_ref_name, filter(find(reference) \
@is_black_box == true && @is_unmapped == true \
&& @is_synlib_module == false && @is_synlib_operator == false \
&& @is_combinational == false)) {
 if((get_attribute(-quiet each_ref_name, is_a_generic_tristate) != true) \
 && (get_attribute(-quiet each_ref_name, is_a_generic_seq) != true) \
 && (get_attribute(-quiet each_ref_name, hdl_template) == {})) {
<current_design>_sub_designs = <current_design>_sub_designs \
- each_ref_name + each_ref_name;
 }
}

Any dependencies on local DesignWare or template parts must be determined. The Perl
subroutine&get_local_dw_list() invokes the followingdc_shell command to find
such parts:

<current_design>_local_dw = {};

foreach(each_ref_name, filter(find(reference) \
@is_black_box == true && @is_unmapped == true \
&& @is_synlib_module == false && @is_synlib_operator == false \
&& @is_combinational == false)) {
 if((get_attribute(-quiet each_ref_name, is_a_generic_tristate) != true) \
 && (get_attribute(-quiet each_ref_name, is_a_generic_seq) != true) \
 && (get_attribute(-quiet each_ref_name, hdl_template) != {})) {
<current_design>_sub_designs = <current_design>_sub_designs \
- get_attribute(each_ref_name,hdl_template) \
+ get_attribute(each_ref_name,hdl_template);
 }
}

SNUG ‘98 7 Usingdc_perl to do_the_right_thing

Dependencies on preprocessor’include files also must be found. The Perl subroutine
&get_include_files_list() recursively finds these files:

##
@include_files = &get_include_files_list();
##
this subroutine returns a list of the include files
of the current design
##
##

sub get_include_files_list {
my (@include_files);
$_ = &get_dc_shell_variable("current_design");
s/.*: *//;
@include_files = &_process_include_file("$_$hdl_suffix",1000);
@include_files = sort(@include_files);
return @include_files;

}

##
@include_files = &_process_include_file($a_file_name,$next_filehandle);
##
Recursively find `include files.
##

sub _process_include_file {
my (@include_filename_list);
my ($filename, $filehandle) = @_;
$filehandle++;
unless (open($filehandle, $filename)) {
 print STDERR "Error: Can't open $filename: $!\n";
 return;
}
while (<$filehandle>) {
 chop;
 if (/^\s*`include(\s+)"(\S+)"/) {
@include_filename_list = (@include_filename_list, $2);
@include_filename_list = (@include_filename_list,
 &_process_include_file($2, $filehandle));
next;
 }
}
close($filehandle);
return @include_filename_list;

}

SNUG ‘98 8 Usingdc_perl to do_the_right_thing

pile
3.4 Creation of default constraint filemodule_name.const

The default module constraint file supports an overconstraining leaf module bottom-up com
strategy [10]. Four types of paths must be properly constrained:

• Flop to flop (clock period)

• Input to flop (set_input_delay and clock period)

• Flop to output (set_output_delay and clock period)

• Input to output combinatorial or Mealy path (set_input_delay and
set_output_delay using virtual input and output clocks)

The timing budget assumes a single Mealy module in between the flops:

Input
Signal

Module 1

IL OL

clk

Module 2

IL OL

clk

CL

1/8 1/2 3/8

Input delay 5/8

Output delay 7/8

OL: Ouput forming Logic
IL: Input forming Logic
CL: Combinatorial Logic
SNUG ‘98 9 Usingdc_perl to do_the_right_thing

Here is a typical constraint file:

/*##*/
/*# #*/
/*# This constraint file was generated by dc_perl for the design #*/
/*# fifo_ctrl #*/
/*# #*/
/*##*/
/* dc_perl’s breadcrumb_trail: {“0”, “{“clk”}”, “0”, “0”} */

reset_design
include environment
clock_period = default_clock_period /* this is a guess */
create_clock -period clock_period -name inputs_virtual_clk
create_clock -period clock_period -name outputs_virtual_clk
create_clock -period clock_period clk
set_drive 0 clk
set_input_delay clock_period * 5 / 8 all_inputs()
set_input_delay clock_period * 1 / 8 all_inputs() -clock inputs_virtual_clk
set_output_delay clock_period * 7 / 8 all_outputs()
set_output_delay clock_period * 3 / 8 all_outputs() -clock outputs_virtual_clk
max_area 1000 * cells_to_gates_ratio
set_dont_touch find(reference,fifo_ctrl_decoder)

Notice that submodules havedont_touch attributes set on their reference to avoiduniquify
problems.
SNUG ‘98 10 Usingdc_perl to do_the_right_thing

he
3.5 Creation of default script filemodule_name.script

A medium effort compile is used, followed by ungrouping of any DesignWare subdesigns. T
set_dont_touch in the constraint file will prevent ungrouping of user-created hierarchy. A
final compile -incremental is done, and the design is written out in.db and netlist
formats.

/*##*/
/*# #*/
/*# This script file was generated by dc_perl for the design #*/
/*# fifo_ctrl #*/
/*# #*/
/*##*/
/* dc_perl’s breadcrumb_trail: {“1”, “0”, ““} */

read -format verilog fifo_ctrl.v
link
verbose_messages = “false”
include fifo_ctrl.const
verbose_messages = “true”
compile
ungroup -all -flatten
compile -incremental
check_design -one_level
create_schematic
write
write -f verilog -output fifo_ctrl.psv
report_area
report_constraint -verbose
report_timing -path full -max_paths 4
exit

Thecreate_schematic is done here to save time when opening the.db file in Design
Analyzer.

Some interesting reports are run with the outputs kept in the synthesis log file.

3.6 Invoking make

After building theMakefile and all the module script and constraint files,
do_the_right_thing invokesmake to compile the complete design.

From this point onwardmake can be invoked directly without usingdo_the_right_thing .
SNUG ‘98 11 Usingdc_perl to do_the_right_thing

997

han,

her:

her
4.0 References

[1] “High-Level Design Methodology Overview”, Ken Nelsen. Synopsys Online
Documentation: Methodology Notes

[2] “Script Automation For Efficient Compilation”, Glenn Dukes. SNUG 1993

[3] “Using make andsccs ”, Kurt Baty. SNUG 1993

[4] “System Design and Validation”, Kurt Baty. SNUG 1994

[5] “My favorite dc_shell Tricks”, Steve Golson, SNUG 1995

[6] “Auto-Synthesis”, Leonard J. LaPadula. SNUG 1996

[7] “Synthesis of a Million Gates”, Don Mills. SNUG 1997

[8] “The Boa Methodology”, Wilson Snyder. SNUG 1997

[9] “ dc_perl : Enhancingdc_shell Using A Perl Wrapper”, Steve Golson. SNUG 1997

[10] “Evolvable Makefiles and Scripts for Synthesis”, Anna Ekstrandh, Wayne Bell. SNUG 1

[11] “Synopsys Makefile for Automation of Required Timing: SMART”, Rodney Ramsay.
SNUG 1997

[12] “Synthesis Methodology for Large Designs, Design Compiler 1997.01 Release”, Don C
Susan Runowicz-Smith. Synopsys, Inc., June 1997

5.0 Availability

All dc_perl anddo_the_right_thing scripts can be retrieved via anonymous ftp from

ftp://ftp.ultranet.com/pub/sgolson/dc_perl

This program is free software; you can redistribute it and/or modify it under the terms of eit

a the GNU General Public License as published by the Free Software Foundation; eit
version 1, or (at your option) any later version, or

b the “Artistic License” which comes with thedc_perl kit.

These are the same terms under which Perl itself is distributed.

Please contact the authors if you have any comments or suggestions regardingdc_perl or
do_the_right_thing .
SNUG ‘98 12 Usingdc_perl to do_the_right_thing

	ABSTRACT
	1.0 Introduction
	1.1 Top-down hierarchical compile
	1.2 Bottom-up compile
	1.3 Bottom-up compile with top-down constraint propagation

	2.0 What is the right thing to do?
	2.1 Automatic generation of default scripts and constraints
	2.2 Automatic time budgeting

	3.0 Gory details
	3.1 dc_perl
	3.2 Creation of environment file
	3.3 Creation of Makefile
	3.4 Creation of default constraint file module_name.const
	3.5 Creation of default script file module_name.script
	3.6 Invoking make

	4.0 References
	5.0 Availability

