
One-hot state machine design for FPGAs
Steve Golson

Trilobyte Systems, 33 Sunset Road, Carlisle MA 01741
Phone: 508/369-9669

Email: sgolson@trilobyte.com
Abstract: One-hot state machines use one flop per
state. They are particularly suited to today’s register-
rich FPGA architectures. This paper will discuss the
advantages of one-hot state machines including ease
of design, simple timing analysis, and high clock rates.
An SBus master/slave interface will be used as a
design example. VHDL and Verilog coding styles will
be discussed.

Introduction
Designing a synchronous state machine is a com-
mon task for a digital logic engineer. Usually the
most important decision to make when designing a
state machine is what state encoding to use. A poor
choice of codes will result in a state machine that
uses too much logic, or is too slow, or both.

Many tools and techniques have been developed for
choosing an "optimal" state encoding. Typically
such approaches use the minimum number of state
bits [7] or assume a two-level logic implementation
such as a PLA [2]. Only recently has work been
done on the multi-level logic synthesis typical of
gate array (and FPGA) design [1].

In the one-hot encoding only one bit of the state
vector is asserted for any given state. All other state
bits are zero. Thus if there are n states then n state
flops are required. State decode is simplified, since
the state bits themselves can be used directly to
indicate whether the machine is in a particular state.
No additional logic is required.

History of one-hot encoding
The first discussion of one-hot state machines was
given by Huffman [3],[4]. He analyzed asynchro-
nous state machines implemented with electrome-
chanical relays, and introduced a "one-relay-per-
row" realization of his flow tables.

Why use one-hot
State machine design for PAL devices generally
requires highly-encoded state assignments because
of the relatively small number of flops available.
Further, the wide AND architecture allows any
number of state bits to be included in each product
term with no speed (or area) penalty.

Today’s logic block FPGA architectures such as
QuickLogic or Xilinx do not support such struc-
tured design techniques, and instead force more
random logic implementations.

A highly-encoded state assignment implemented in
such an FPGA will use fewer flops for the state vec-
tor, however additional logic blocks will be
required simply to encode and decode the state.
Since one or more flops are included in each logic
block anyway, the total number of logic blocks used
may in fact be larger for the highly-encoded case
than in the one-hot case.

There are numerous advantages to using the one-
hot design methodology:

• Maps easily into register-rich FPGA architectures
such as QuickLogic and Xilinx.

• One-hot state machines are typically faster. Speed
is independent of the number of states, and instead
depends only on the number of transitions into a
particular state. A highly-encoded machine may
slow dramatically as more states are added.

• Don’t have to worry about finding an "optimal"
state encoding. This is particularly beneficial as the
machine design is modified, for what is "optimal"
for one design may no longer be best if you add a
few states and change some others. One-hot is
equally "optimal" for all machines.

• One-hot machines are easy to design. Schematics
can be captured and HDL code can be written
directly from the state diagram without coding a
state table.

• Modifications are straightforward. Adding and
deleting states, or changing excitation equations,
can be implemented easily without affecting the
rest of the machine.

• Easily synthesized from VHDL or Verilog.

• There is typically no area penalty over highly-
encoded machines.

• Critical paths are easy to find using static timing
analysis.

• Easy to debug. Bogus state transitions are obvi-
ous, and current state display is trivial.
Page 1 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

Example design
SBus is a synchronous IO expansion bus that sup-
ports 32-bit and 64-bit transfer widths. Both single
and burst transfers are supported, allowing data
rates of up to 168 Mbytes/sec. SBus devices may
serve as masters on the bus, or as slaves providing
data transfer in response to some other master, or
both. All signals are generated and sampled with
respect to CLK.

SBus was first developed by Sun Microsystems [8]
and is now in the final stages of becoming an IEEE
standard [5]. Lyle [6] gives a very useful introduc-
tion to SBus.

Figure 1 shows a simplified state diagram for an
SBus device with both master and slave capability.

While in state IDLE, if AS and SEL are asserted
then the device is being accessed as a slave. During

state SLAVE_ACK the appropriate acknowledg-
ment is returned to the master, either indicating that
the requested data has been transferred, or asking
that the transfer be retried, or signifying an error. In
state SLAVE_DONE the slave waits for AS to be
negated indicating the end of the access.

Alternatively if BG is asserted while in IDLE then
the device has been granted the bus for a master
access. In state VA the virtual address is driven by
the master indicating which data is to be accessed.
In ACK_WAIT the master waits for an acknowl-
edgment from the selected slave, and then in
MASTER_DONE waits for BG to be negated indi-
cating the access has completed.

Schematic capture
An advantage of one-hot encoding is that the logic
design may be captured directly from the state dia-
gram without first requiring the generation of a state
table.

Each state in the state diagram has a corresponding
flop in the state vector. The output of that flop is
given the name of the corresponding state. To deter-
mine when any given transition is taken we AND
the transition condition with the signal representing
the previous state. Then the D input of a state flop is
the logical OR of all possible transitions which
have that state as their destination.

Consider the IDLE state in Figure 1. There are three
transitions into IDLE: from MASTER_DONE if
BG is negated, from SLAVE_DONE if AS is
negated, and from IDLE itself. Thus the D input of
the IDLE flop is driven by a three-input OR gate
with each input representing one of the possible
transitions. Figure 2 shows the schematic for the
IDLE state flop.

BG &
(AS & SEL)

IDLE

ACK
WAIT

SLAVE
SEL

SLAVE
ACK

VA

MASTER
DONE

SLAVE
DONEAS

AS

AS & SEL

BG & (AS & SEL)

ACK = IDLE_ACK

ACK ≠ IDLE_ACK

BG

BG

Figure 1 -- State diagram

AS
SEL

MASTER_DONE
BG

SLAVE_DONE

BG

IDLE

CLK

RESET

D Q

PRE

Figure 2 -- Schematic for IDLE state flop

AS
Page 2 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

When RESET is asserted we want the machine to
enter the IDLE state. Therefore the IDLE flop is
preset when RESET is asserted. All other state flops
will be cleared by RESET.

Using a QuickLogic FPGA allows almost all of the
circuit of Figure 2 to be mapped into a single logic
cell. The remaining logic (the NAND) can be incor-
porated into a logic block whose state flop requires
little or no input logic (e.g. SLAVE_ACK) or into a
logic block that requires a similar gate anyway
(e.g. SLAVE_SEL). The area required to imple-
ment a one-hot machine with n states is typically
close to n logic blocks. This allows for easy area
estimation early in the design process.

Logic synthesis
Logic synthesis has recently become a popular way
to design FPGAs. As available gate counts have
climbed, traditional PLD schematic capture or
PALASM descriptions have become too limiting.
Further, using a hardware description language
such as Verilog or VHDL allows some measure of
vendor independence, facilitates system-level
behavioral modeling, and more easily supports the
translation of FPGA designs into gate arrays. Tradi-
tional gate array synthesis tools such as Synopsys
have added more support for FPGA architectures,
and FPGA-specific synthesis tools such as Exem-
plar have become available.

One-hot state machines may be easily described
using either Verilog or VHDL. Using the proper
coding style can result in logic approaching the
quality of hand-captured schematics.

Some vendors have state machine optimization
tools which will automatically extract a state
machine from an HDL description, and pick an
"optimal" state encoding. The results may not be as
good as coding for one-hot to begin with. Further,
the techniques outlined here require no non-stan-
dard HDL extensions, and thus should work well
with any synthesis tool.

VHDL examples
The "classic" VHDL description of our example
state machine first defines the states as an enumera-
tion type:

type STATE_TYPE is
 (IDLE, SLAVE_SEL, SLAVE_ACK,
 SLAVE_DONE, VA, ACK_WAIT,
 MASTER_DONE) ;

Then the main state machine logic is implemented
with a case statement:

case STATE is
 when IDLE =>
 if (AS = '1' and SEL = '1') then
 NEXT_STATE <= SLAVE_SEL ;
 elsif (BG = '1') then
 NEXT_STATE <= VA ;
 else
 NEXT_STATE <= IDLE;
 end if;

 when SLAVE_SEL =>
 NEXT_STATE <= SLAVE_ACK ;

 when SLAVE_ACK =>
 NEXT_STATE <= SLAVE_DONE ;

 when SLAVE_DONE =>
 if (AS = '1') then
 NEXT_STATE <= SLAVE_DONE ;
 else
 NEXT_STATE <= IDLE ;
 end if ;

 when VA =>
 NEXT_STATE <= ACK_WAIT ;

 when ACK_WAIT =>
 if (ACK = IDLE_ACK) then
 NEXT_STATE <= ACK_WAIT ;
 else
 NEXT_STATE <= MASTER_DONE ;
 end if ;

 when MASTER_DONE =>
 if (BG = '1') then
 NEXT_STATE <= MASTER_DONE ;
 else
 NEXT_STATE <= IDLE ;
 end if ;
 end case;

Finally, the state flops are inferred from an if state-
ment:

if (RESET = '1') then
 STATE <= IDLE ;
elsif (CLK'event and CLK = '1') then
 STATE <= NEXT_STATE ;
 end if ;

The first enumeration literal in the type statement
is given the value 0, the next literal is assigned 1,
and so forth. Thus we have a highly-encoded state
assignment using the minimum number of state
bits, where the encoding can be modified only by
changing the order of enumeration.
Page 3 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

So how can we describe a one-hot encoding? If we
are using Synopsys synthesis tools it is tempting to
use the ENUM_ENCODING attribute:

attribute ENUM_ENCODING of
 STATE_TYPE: type is
 "0000001 0000010 0000100 0001000
 0010000 0100000 1000000" ;

Although this does result in a one-hot encoding, the
synthesis tool may not recognize all the don’t care
conditions. Some unnecessary state decode logic
may be built, except now using wider gates, which
is exactly the opposite of the desired result! Fur-
thermore the ENUM_ENCODING attribute is a non-
standard extension of VHDL and is not portable to
VHDL simulators or other synthesis tools.

A better way is to use a coding style that directly
gives the one-hot results we want. Such a style is
illustrated in Listing 2 which shows a complete
VHDL description of our example state machine.

Listing 2 looks superficially similar to the "classic"
version above. The major difference is the use of a
sequence of if statements rather than a single
case. The statements within each if are identical
to the statements within the case, except that the
assignment to NEXT_STATE affects only the single
bit representing the destination state. All other bits
of NEXT_STATE will be assigned to zero by the
default

 NEXT_STATE <= ZERO_STATE ;

statement at the beginning of the process.

Verilog examples
The same coding style can be used in Verilog. An
initial assignment of next_state to zero is fol-
lowed by a series of if statements. Listing 1 shows
a Verilog description of the example design.

Timing analysis
Static timing analysis may be used to speed up a
slow design. Once the slowest state transition is
found, the machine may be sped up by changing the
state diagram or modifying the input dependencies.

A static timing report on a highly-encoded machine
may show that the critical path (the slowest path) is
from state[3]/Q falling to state[0]/D falling.
It is difficult to determine exactly which state tran-
sition this corresponds to. Worse, it may actually be
a false path that doesn’t correspond to any legal
transition.

A one-hot machine is much easier to analyze. In our
example we might get a critical path from
state[6]/Q rising to state[0]/D rising. Since
bit 6 corresponds to MASTER_DONE and bit 0 to
IDLE, this path occurs when MASTER_DONE is
entered and we transition to IDLE on the next
clock. This transition depends on input BG.

Other design considerations
The transitions leaving a given state must be mutu-
ally exclusive and all inclusive [9]. If more than one
transition is active then more than one state bit will
be set. If the transitions are not all inclusive then
there is some value of inputs which will result in no
state bits being set (i.e. all will be cleared). Both
conditions are illegal states.

Thus, when drawing schematics directly from the
state diagram be sure that all possible input condi-
tions for each state are correctly specified.1 If you
are using an HDL this is easy to guarantee. In any
given state an if-elsif-else construct is used.
Mutual exclusion is ensured by asserting only one
bit of NEXT_STATE in any if branch. All inclusion
is ensured by having a default else branch. See
Listing 2 for examples.

Illegal states may also be entered because of poorly
synchronized inputs, illegal input combinations, or
hardware failures. One technique for recovering
from illegal states is to use an asserted state bit to
synchronously reset other state bits. In our example
we could use SLAVE_SEL to reset all bits except
SLAVE_ACK (don’t reset a state bit which may
possibly be the next state). In our VHDL example
we can implement this by adding:

 if (STATE(SLAVE_SEL) = ’1’) then
 NEXT_STATE(IDLE) = ’0’ ;
 NEXT_STATE(SLAVE_SEL) = ’0’ ;
 NEXT_STATE(SLAVE_DONE) = ’0’ ;
 NEXT_STATE(VA) = ’0’ ;
 NEXT_STATE(ACK_WAIT) = ’0’ ;
 NEXT_STATE(MASTER_DONE) = ’0’ ;
 end if ;

just before the first end process in Listing 2.

Another illegal state is the all zeroes condition. A
wide (but slow) NOR gate may be used to detect
this condition and set the IDLE state bit.

All of these techniques will provide some measure
of recovery from illegal states, but cost area and

1. This is one situation where it might be better
to use a state table rather than a state diagram.
Page 4 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

speed, thus negating the very strengths of one-hot
encoding. If such a minimal risk design is required
by your application then perhaps a larger, slower,
more highly-encoded state machine should be used.

Acknowledgments
Thanks to QuickLogic for providing access to
design tools. Thanks to John F. Wakerly for finding
the Huffman references. Thanks to Michiel Ligthart
of Exemplar for synthesizing the VHDL examples.

References
[1] Pranav Ashar, Srinivas Devadas, A. Richard

Newton, Sequential Logic Synthesis, Kluwer
Academic Publishers, 1992.

[2] Giovanni De Micheli, Robert K. Brayton,
Alberto Sangiovanni-Vincentelli, "Optimal State
Assignment for Finite State Machines," IEEE
Trans. Computer-Aided Design, vol. CAD-4, no.
3, pp. 269-285, July 1985.

[3] D. A. Huffman, "The Synthesis of Sequential
Switching Circuits," J. Franklin Institute, vol.
257, no. 3, pp. 161-190, March 1954.

[4] D. A. Huffman, "The Synthesis of Sequential
Switching Circuits," J. Franklin Institute, vol.
257, no. 4, pp. 275-303, April 1954.

[5] IEEE, Standard for a Chip and Module
Interconnect Bus: SBus, P1496, Draft 2.3 of
January 11, 1993.

[6] James D. Lyle, SBus: Information,
Applications, and Experience, Springer-Verlag,
1992.

[7] James R. Story, Harold J. Harrison, Erwin A.
Reinhard, "Optimum State Assignment for
Synchronous Sequential Circuits," IEEE Trans.
Computers, vol. C-21, no. 12, pp. 1365-1373,
December 1972.

[8] Sun Microsystems, Inc., SBus Specification
B.0, Part Number 800-5922-10, Revision A of
December 1990.

[9] John F. Wakerly, Digital Design: Principles
and Practices, Prentice-Hall, 1990.

Listing 1 -- Partial Verilog code for one-hot SBus
state machine example

always @ (state or BG or AS or
 SEL or ACK)
 begin

 next_state = `ZERO_STATE ;

 if (state[`IDLE]) begin
 if (AS && SEL)
 next_state[`SLAVE_SEL] = 1'b1 ;
 else if (BG)
 next_state[`VA] = 1'b1 ;
 else
 next_state[`IDLE] = 1'b1 ;
 end

 if (state[`SLAVE_SEL])
 next_state[`SLAVE_ACK] = 1'b1 ;

 if (state[`SLAVE_ACK])
 next_state[`SLAVE_DONE] = 1'b1 ;

 if (state[`SLAVE_DONE]) begin
 if (AS)
 next_state[`SLAVE_DONE] = 1'b1 ;
 else
 next_state[`IDLE] = 1'b1 ;
 end

 if (state[`VA])
 next_state[`ACK_WAIT] = 1'b1 ;

 if (state[`ACK_WAIT]) begin
 if (ACK == `IDLE_ACK)
 next_state[`ACK_WAIT] = 1'b1 ;
 else
 next_state[`MASTER_DONE] = 1'b1 ;
 end

 if (state[`MASTER_DONE]) begin
 if (BG)
 next_state[`MASTER_DONE] = 1'b1 ;
 else
 next_state[`IDLE] = 1'b1 ;
 end
 end

always @ (posedge CLK or posedge RESET)
 begin
 if (RESET) begin
 state = `ZERO_STATE ;
 state[`IDLE] = 1'b1 ;
 end
 else
 state = next_state ;
 end
Page 5 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

Page 6 -- March 30, 1993 -- 3rd PLD Design Conference, Santa Clara CA

package TYPES is
 constant IDLE: NATURAL := 0 ;
 constant SLAVE_SEL: NATURAL := 1 ;
 constant SLAVE_ACK: NATURAL := 2 ;
 constant SLAVE_DONE: NATURAL := 3 ;
 constant VA: NATURAL := 4 ;
 constant ACK_WAIT: NATURAL := 5 ;
 constant MASTER_DONE: NATURAL := 6 ;

 subtype STATE_TYPE is
 BIT_VECTOR (6 downto 0) ;

 constant ZERO_STATE:
 STATE_TYPE := "0000000" ;

type ACK_TYPE is (IDLE_ACK, ERROR_ACK,
 BYTE_ACK, RETRY_ACK, WORD_ACK,
DOUBLE_ACK, HALF_ACK, RESERVED_ACK) ;

 type SIZ_TYPE is (WORD_SIZ, BYTE_SIZ,
 HALF_SIZ, EXTENDED_SIZ, BURST4_SIZ,
BURST8_SIZ, BURST16_SIZ, BURST2_SIZ);

 end ;

use WORK.TYPES.ALL ;

entity ONE_HOT is
 port
 (CLK, RESET, BG, AS, SEL : in BIT ;
 ACK : in ACK_TYPE ;
 STATE : buffer STATE_TYPE);
 end;

architecture BEHAVIOR of ONE_HOT is
 signal NEXT_STATE: STATE_TYPE ;
begin
 process(STATE, BG, AS, SEL, ACK)
 begin

 NEXT_STATE <= ZERO_STATE ;

 if (STATE(IDLE) = '1') then
 if (AS = '1' and SEL = '1') then
 NEXT_STATE(SLAVE_SEL) <= '1' ;
 elsif (BG = '1') then
 NEXT_STATE(VA) <= '1' ;
 else
 NEXT_STATE(IDLE) <= '1' ;
 end if ;
 end if ;

 if (STATE(SLAVE_SEL) = '1') then
 NEXT_STATE(SLAVE_ACK) <= '1' ;
 end if ;

 if (STATE(SLAVE_ACK) = '1') then
 NEXT_STATE(SLAVE_DONE) <= '1' ;
 end if ;

 if (STATE(SLAVE_DONE) = '1') then
 if (AS = '1') then
 NEXT_STATE(SLAVE_DONE) <= '1' ;
 else
 NEXT_STATE(IDLE) <= '1' ;
 end if ;
 end if ;

 if (STATE(VA) = '1') then
 NEXT_STATE(ACK_WAIT) <= '1' ;
 end if ;

 if (STATE(ACK_WAIT) = '1') then
 if (ACK = IDLE_ACK) then
 NEXT_STATE(ACK_WAIT) <= '1' ;
 else
 NEXT_STATE(MASTER_DONE) <= '1' ;
 end if ;
 end if ;

 if (STATE(MASTER_DONE) = '1') then
 if (BG = '1') then
 NEXT_STATE(MASTER_DONE) <= '1' ;
 else
 NEXT_STATE(IDLE) <= '1' ;
 end if ;
 end if ;
 end process;

 process(CLK, RESET, NEXT_STATE)
 begin
 if (RESET = '1') then
 STATE <= ZERO_STATE ;
 STATE(IDLE) <= '1' ;
 elsif (CLK'event and CLK = '1') then
 STATE <= NEXT_STATE ;
 end if ;
 end process;
 end BEHAVIOR;

Listing 2 -- Complete VHDL code for one-hot SBus state machine

	Introduction
	History of one-hot encoding
	Why use one-hot
	Example design
	Schematic capture
	Logic synthesis
	VHDL examples
	Verilog examples
	Timing analysis
	Other design considerations
	Acknowledgments
	References

