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Abstract†: Designing a synchronous finite state
machine (FSM) is a common task for a digital logic
engineer. This paper will discuss a variety of issues
regarding FSM design using Synopsys Design
Compiler1. Verilog and VHDL coding styles will be
presented. Different methodologies will be compared
using real-world examples.

1.0 Introduction
A finite state machine2 has the general structure
shown in Figure 1.

The current state of the machine is stored in the
state memory, a set of n flip-flops clocked by a
single clock signal (hence “synchronous” state
machine). The state vector (also current state, or
just state) is the value currently stored by the state
memory. The next state of the machine is a function
of the state vector and the inputs. Mealy outputs [7]
are a function of the state vector and the inputs
while Moore outputs [8] are a function of the state
vector only.

Another way of organizing a state machine uses
only one logic block as shown in Figure 2.

2.0 Basic HDL coding
The logic in a state machine is described using a
case statement or the equivalent (e.g. if-else).
All possible combinations of current state and
inputs are enumerated and the appropriate values
are specified for next state and the outputs.

A state machine may be coded as per Figure 1 using
two separate case statements, or following Figure
2 using only one. A single case statement may be
preferred for Mealy machines where the outputs
depend on the state transition rather than just the
current state.

The listings in the Appendix show examples of both
techniques. prep3 uses a single case whereas prep4
is coded with a separate logic block that generates
the outputs.

Here are a few general rules to follow:

• Only one state machine per module

• Keep extraneous logic at a minimum (i.e. try not
to put other code in the same module as the FSM --
this is especially important if you use extract)

• Instantiate state flops separately from logic

3.0 State assignment
Usually the most important decision to make when
designing a state machine is what state encoding to
use. A poor choice of codes will result in a state
machine that uses too much logic, or is too slow, or
both.

Many tools and techniques have been developed for
choosing an “optimal” state assignment. Typically
such approaches use the minimum number of state
bits [10] or assume a two-level logic
implementation such as a PLA [3]. Only recently
has work been done on the multi-level logic
synthesis typical of gate array design [1].

3.1 Highly-encoded state assignment

A highly-encoded state assignment will use fewer
flops for the state vector, however additional logic

†. An earlier version of this paper was presented at
SNUG 1994. See Section 12.0 on page 11.

1. Version v3.0b-12954 was used for all examples.
2. As opposed to an infinite state machine [13].
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will be required simply to encode and decode the
state.

3.2 One-hot encoding

In the one-hot encoding only one bit of the state
vector is asserted for any given state. All other state
bits are zero. Thus if there are n states then n state
flops are required. State decode is simplified, since
the state bits themselves can be used directly to
indicate whether the machine is in a particular state.
No additional logic is required.

3.2.1 History of one-hot encoding

The first discussion of one-hot state machines was
given by Huffman [5][6]. He analyzed
asynchronous state machines implemented with
electromechanical relays, and introduced a “one-
relay-per-row” realization of his flow tables.

3.2.2 Why use one-hot

There are numerous advantages to using the one-
hot design methodology:

• One-hot state machines are typically faster. Speed
is independent of the number of states, and instead
depends only on the number of transitions into a
particular state. A highly-encoded machine may
slow dramatically as more states are added.

• Don’t have to worry about finding an “optimal”
state encoding. This is particularly beneficial as the
machine design is modified, for what is “optimal”
for one design may no longer be best if you add a
few states and change some others. One-hot is
equally “optimal” for all machines.

• One-hot machines are easy to design. HDL code
can be written directly from the state diagram with-
out coding a state table.

• Modifications are straightforward. Adding and
deleting states, or changing excitation equations,
can be implemented easily without affecting the
rest of the machine.

• Easily synthesized from VHDL or Verilog.

• There is typically not much area penalty over
highly-encoded machines.

• Critical paths are easy to find using static timing
analysis.

• Easy to debug. Bogus state transitions are obvi-
ous, and current state display is trivial.

3.3 Almost one-hot encoding

If a machine has two groups of states with almost
identical functionality (e.g. for handling read and
write access to a device), an “almost one-hot”
encoding may be used where a single flag or state
bit is used to indicate which of the two state groups
the FSM is currently in. The remainder of the state
bits are encoded one-hot. Thus to fully decode a
given state we must look at two state bits. This
scheme has most of the benefits of a pure one-hot
machine but with less logic.

Although the flag bit is technically part of the state
vector, it may be useful to consider the flag flop
output pin as just another input to the machine (and
likewise the flag flop input pin is a machine output).
In the above example the flag might have a name
like RW.

Another “almost one-hot” encoding uses the all-
zeroes or “no-hot” encoding for the initial state.
This allows for easy machine reset since all flops go
to zero. This may be especially useful when a
synchronous reset is needed.

3.4 Error recovery and illegal states

It is sometimes argued that state machines should
have the minimum number of state flops (i.e. a
highly-encoded state assignment) because this
minimizes the number of illegal states. The hope is
that if the machine malfunctions and makes an
illegal transition, at least the erroneous destination
will be a legal state, and the machine can recover.

This often turns out not to be the case. Just because
the machine ends up in a “legal” state doesn’t mean
that it can recover from the error. Consider a WAIT
state that the machine loops in until a particular
signal is received. If the WAIT state is entered
accidentally then the machine probably hangs.

Perhaps to facilitate error recovery the maximum
number of state flops should be used (i.e. one-hot).
If a bad transition is made then it will almost
certainly put the machine in an illegal state (since
the legal states are a small fraction of all possible
state vector values). This illegal state can be
detected by external logic which may then take
appropriate action (e.g. reset the FSM).

4.0 Coding state transitions
State transitions are coded using a case structure to
specify the next state values.
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4.1 Highly-encoded machine

For a highly-encoded machine the case statement
uses the state vector as the expression. In Verilog
the case items are typically parameters that specify
the state encoding for each state:

case (state)
// synopsys parallel_case full_case

    START:
      if (in == 8'h3c)
          next_state = SA ;
      else
          next_state = START ;

    SB:
      if (in == 8'haa)
          next_state = SE ;
      else
          next_state = SF ;

    SC:
      next_state = SD ;

See Listing 1 and Listing 3 for more examples.
Using parameter and the full_case directive in
Verilog we can specify arbitrary state encodings
and still have efficient logic.

In VHDL the state encodings are declared as an
enumerated type (see Listing 5). The actual
numeric value of the enumerated elements is
predefined by the VHDL language: the first element
is 0, then 1, 2, etc. It is difficult to define arbitrary
encodings in the VHDL language.3

To remedy this problem Synopsys has provided the
attribute enum_encoding which allows you to
specify numeric code values for the enumerated
types. Unfortunately not all VHDL simulators will
implement this vendor-specific extension, which
means your behavioral and gate simulations will
use different encodings.

4.2 One-hot machine

For a one-hot encoding you need only look at one
bit to determine if you are in a particular state. Thus
the case statement in Verilog looks as follows (see
Listing 2 for more):

next_state = 8'b0 ;

case (1'b1)
// synopsys parallel_case full_case

    state[START]:
        if (in == 8'h3c)
            next_state[SA] = 1'b1 ;
        else
            next_state[START] = 1'b1 ;

    state[SB]:
        if (in == 8'haa)
            next_state[SE] = 1'b1 ;
        else begin
            next_state[SF] = 1'b1 ;

    state[SC]:
        next_state[SD] = 1'b1 ;

The case statement looks at each state bit in turn
until it finds the one that is set. Then one bit of
next_state is set corresponding to the
appropriate state transition. The remaining bits of
next_state are all set to zero by the default
statement

  next_state = 8'b0 ;

Note the use of parallel_case and full_case

directives for maximum efficiency. The default
statement should not be used during synthesis.
However default can be useful during behavioral
simulation, so use compiler directives to prevent
Design Compiler from seeing it:

// synopsys translate_off
default: $display(“He’s dead, Jim.”) ;
// synopsys translate_on

For VHDL we use a sequence of if statements (see
Listing 6 for more):

next_state <= state_vec'(others=>'0');

if state(1) = '1' then
  if (Iin(1) and Iin(0)) = '1' then
    next_state(0) <= '1';
  else
    next_state(3) <= '1';
  end if ;
end if ;

if state(2) = '1' then
  next_state(3) <= '1' ;
end if;

As before, all the bits of next_state are set to
zero by the default assignment, and then one bit is
set to ‘1’ indicating the state transition.

3. This still isn’t fixed in VHDL ’93 [2].
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For both the Verilog and VHDL one-hot machines,
the behavioral simulation will exactly agree with
the post-synthesis gate-level simulation.

4.3 Almost one-hot machine

The only difference from the pure one-hot machine
is that you may look at more than one state bit to
determine the current state:

case (1'b1)
// synopsys parallel_case full_case

    state[START] && state[RW]:
        if (in == 8'h3c)
            next_state[SA] = 1'b1 ;
        else
            next_state[START] = 1'b1 ;

5.0 Outputs
Outputs are coded in a manner similar to the next
state value. A case statement (or the equivalent) is
used, and the output is assigned the appropriate
value depending on the particular state transition or
state value.

If the output is a don’t care for some conditions
then it should be driven unknown (x). Design
Compiler will use this don’t care information when
optimizing the logic.

Assigning the output to a default value prior to the
case statement will ensure that the output is
specified for all possible state and input
combinations. This will avoid unexpected latch
inference on the output. Also the code is simplified
by specifying a default value which may be
overridden only when necessary. The default value
may be 1, 0 or x.

It is best to have a default of 0 and occasionally set
it to 1 rather than the reverse (even if this requires
an external inverter). Consider an output that is 1 in
a single state, and 0 otherwise. Design Compiler
will make the output equal to the one-hot state bit
for that state. Now consider an output that is 0 in
only one state, and 1 otherwise. The output will be
driven by an OR of all the other state bits! Using
set_flatten -phase true will not help.

For a one-hot machine you can use the state bits
directly to create outputs which are active in those
states:

  myout = state[IDLE] || state[FOO] ;

Sometimes it is easier to specify an output value as
a function of the next state rather than of the current
state.

5.1 Registered outputs

Outputs can be registered. A simple D flop may be
used, but a JK functionality can be implemented as
well. The output of the flop is fed back as an input
to the machine. The default next output value is the
current flop output:

    next_myout = myout ; /* default */

With no further assignment the value will hold, or
we can set, clear, and toggle:

    next_myout = 1’b1 ; /* set */

    next_myout = 1’b0 ; /* clear */

    next_myout = !myout ; /* toggle */

This JK type output is especially useful for pseudo-
state flag bits (see Section 3.3).

6.0 Inputs

6.1 Asynchronous inputs

Sometimes a state machine will have an input
which may change asynchronously with respect to
the clock. Such an input must be synchronized, and
there must be one and only one synchronizer flop.

The easiest way to accomplish this is to have the
sync flop external to the state machine module, and
place a large4 set_input_delay on that input to
allow time for the sync flop to settle.

If the sync flop is included in the same module as
the FSM then you can place an input delay on the
internal flop output pin. Unfortunately this requires
the flop to be mapped prior to compiling the rest of
the machine.

Rather than hand-instantiating the flop we can use
register inference as usual and simply map that one
flop before compiling. The following script will
map the flop:

4. “Large” means a large fraction of your clock period.
Extra credit: ask your ASIC vendor about the metastabil-
ity characteristics of their flops. Try not to laugh.
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/* get the name of the unmapped flop */
theflop = signal_to_be_synced + "_reg"
/* group it into a design by itself */
group -cell flop -design temp \
    find(cell,theflop)
/* remember where you are */
top = current_design
/* push into the new design */
current_design = temp
/* set_register_type if necessary */
/* map the flop */
compile -map_effort low -no_design_rule
/* pop back up */
current_design = top
/* ungroup the flop */
ungroup -simple_names find(cell,flop)
/* clean up */
remove_design temp
remove_variable top
/* now set the internal delay */
set_input_delay 10 -clock clk \
    find(pin,theflop/Q*)
/* now you can compile the fsm */

The set_input_delay will put an implicit
dont_touch on the sync flop.

If your ASIC vendor has a “metastable resistant”
flop then use set_register_type to specify it.

6.2 Unknown inputs

A related problem occurs when an input is valid at
certain well-defined times, and is otherwise
unknown (and possibly asynchronous). Even if
your code is written to only use this signal when
you know it to be stable, Design Compiler may
create optimized logic whereby changes in this
input may cause glitches even when you are not
“looking” at it.5

The only way to prevent this problem is to gate the
input signal with an enable. This enable signal is
usually a simple decode of the state vector; thus the
gate output is non-zero only when the enable is true
and will never be unknown. The gate output is used
in place of the input signal in your FSM.

To implement this gating function an AND gate (or
other suitable logic) must be hand-instantiated and
protected with dont_touch during compile.

Rather than instantiating a specific gate from your
vendor library, the gate can be selected from the
Synopsys GTECH library. This keeps your HDL
code vendor-independent. In Verilog this is done

  GTECH_AND2 myand (
    .Z(signal_qualified),
    .A(signal_in), .B(enable)) ;

and for VHDL

  myand : GTECH_AND2 port map(
     Z => signal_qualified,
     A => signal_in, B => enable) ;

Your compile script should contain

  set_map_only find(cell,myand) ;

which prevents logic-level optimization during the
compile. Design Compiler will attempt to map the
gate exactly in the target library.

Sometimes this technique will create redundant
logic in your module. This can cause a problem
when generating test vectors because some nodes
may not be testable.

Verilog users may be tempted to use gate
primitives:

   and myand (signal_qualified,
     signal_in, enable) ;

making the reasonable assumption that this will
initially map to a GTECH_AND2 as the Verilog is
read in. Then set_map_only could be used as
above. Unfortunately this does not work; gate
primitives do not always map to a GTECH cell.
Perhaps a future Synopsys enhancement will allow
this.

In order to support behavioral simulation of your
HDL, a behavioral description of the GTECH gates
must be provided. Synopsys supplies such a library
only for VHDL users. One hopes that a similar
Verilog library will be provided in a future release.

7.0 FSM extract
Design Compiler directly supports finite-state
machines using the extract command. extract
gives you the ability to change your state encodings
during compile, thus allowing you to experiment
with different FSM implementations[11].

To use extract you must tell Design Compiler
where your state vector is, and also any state names
and encodings you may have. The easiest way to do
this is with attribute state_vector in VHDL
and via the enum code and state_vector

5. An example would be where the signal is used as a
mux select. If the data inputs to the mux are equal then
Design Compiler assumes the mux output will have the
same value regardless of the select value. Unfortunately,
glitches on the select may nevertheless cause glitches on
the mux output.



State machine design techniques for Verilog and VHDL

Page 6 © Steve Golson 1994

synthetic comments in Verilog. (See Listing 1,
Listing 3, and Listing 5 for examples.)

extract puts your design into a two-level PLA
format before doing any optimizations and
transformations. Thus if your design cannot be
flattened then you cannot use extract.

Synopsys provides the group -fsm command to
isolate your state machine from any other logic in
its module. Unfortunately the newly-created ports
have Synopsys internal names like n1234. The
resulting state table is difficult to understand.
Therefore to efficiently use extract you should
avoid group -fsm. This means you can have no
extraneous logic in your module.

Your design must be mapped to gates before you
can use extract. Synopsys suggests that you run
compile on your design after reading in the HDL
and before applying any constraints, i.e.:

compile -map_effort low -no_design_rule

This isn’t really necessary since most of your
design will already be implemented in generic logic
after reading the HDL, and extract can handle
that fine. What you really must do is

  replace_synthetic

to map all synthetic library elements into generic
logic, followed by

  ungroup -all -flatten

to get rid of any hierarchy. This will be
considerably faster than using compile.

After using extract always do check_design to
get a report on any bad state transitions.

7.1 Advantages

You can get very fast results using extract with
set_fsm_coding_style one_hot.

FSM design errors can be uncovered by inspecting
the extracted state table.

7.2 Disadvantages

The world isn’t a PLA, but extract treats your
design like one.

Unless you are truly area constrained, the only
interesting coding style that extract supports is
one-hot. You might as well code for one-hot to
begin with (cf. Section 4.2).

You can be happily using extract, but one day
modify your HDL source and then discover that

you can no longer flatten the design. This precludes
any further use of extract.

Compile scripts are more verbose and complicated.

8.0 Timing constraints
When applying timing constraints it is helpful to
use the real clock only for the state flops. Virtual
clocks are then used to specify the input and output
delays:

clk_period = 10
clk_rise   = 0
clk_fall   = clk_period / 2.0
/* create the clocks */
create_clock find(port,clk) \
   -period clk_period \
   -waveform {clk_rise clk_fall}
create_clock -name inclk \
   -period clk_period \
   -waveform {clk_rise clk_fall}
create_clock -name outclk \
   -period clk_period \
   -waveform {clk_rise clk_fall}
/* set the constraints */
set_input_delay  clk_fall \
   -clock inclk  find(port,in)
set_output_delay clk_fall \
   -clock outclk find(port,out)

This allows a clock skew to be applied to the state
flops without affecting the input and output timing
(which may be relative to an off-chip clock, for
example).

If you have any Mealy outputs you generally need
to specify them as a multicycle path using

  set_multicycle_path -setup 2 \
    -from all_inputs() \
    -to   all_outputs()
  set_multicycle_path -hold 1 \
    -from all_inputs() \
    -to   all_outputs()

Sometimes it is useful to group paths into four
categories: input to state flop, state flop to output,
input to output (Mealy path), and state flop to state
flop. With the paths in different groups they can be
given different cost function weights during
compile.

If we have used separate clocks as suggested above
then we might try

/* put all paths in default group */
group_path -default -to \
{ find(clock) find(port) find(pin) } \

  > /dev/null
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/* now arrange them */
group_path -name theins \
  -from find(clock,inclk) \
  -to   find(clock,clk)
group_path -name theouts \
  -from find(clock,clk) \
  -to   find(clock,outclk)
group_path -name thru \
  -from find(clock,inclk) \
  -to   find(clock,outclk)
group_path -name flop \
  -from find(clock,clk) \
  -to   find(clock,clk)

Unfortunately this doesn’t work! It seems that
whenever you specify a clock as a startpoint or
endpoint of a path, all paths with that clock are
affected. You end up with the same path in more
than one group.6 So instead of using clocks we can
specify pins:

group_path -name theins \
  -from all_inputs() \
  -to   all_registers(-data)
group_path -name theouts \
  -from all_registers(-clock_pins) \
  -to   all_outputs()
group_path -name thru \
  -from all_inputs() \
  -to   all_outputs()
group_path -name flop \
  -from all_registers(-clock_pins)
  -to   all_registers(-data)

This works fine. You do get the paths where you
want them.7

Regardless of the path groupings we can specify
timing reports that give us the information we want:

report_timing \
  -from all_inputs() \
  -to   all_registers(-data)
report_timing \
  -from all_registers(-clock_pins) \
  -to   all_outputs()
report_timing \
  -from all_inputs() \
  -to   all_outputs()
report_timing \
  -from all_registers(-clock_pins)
  -to   all_registers(-data)

8.1 One-hot timing reports

A further advantage of one-hot state assignment is
that critical path timing reports can be directly
related to the state diagram. Consider the following
timing report:

 Point                         Path
 -------------------------------------
 clock clk (rise edge)         0.00
 clock network delay (ideal)   0.00
 state_reg[0]/CP (FD2)         0.00 r
 state_reg[0]/QN (FD2)         5.25 f
 U481/Z (NR2)                 11.39 r
 U505/Z (IV)                  12.21 f
 U474/Z (NR2)                 14.14 r
 U437/Z (EO1)                 16.23 f
 U469/Z (AO3)                 18.11 r
 U463/Z (EO1)                 20.21 f
 U480/Z (AO7)                 22.08 r
 U440/Z (AO2)                 23.24 f
 U495/Z (ND2)                 24.65 r
 state_reg[1]/D (FD2)         24.65 r
 data arrival time            24.65

If this is a highly-encoded machine then it is very
difficult to determine which state transition this
path corresponds to. Worse, this may actually be a
false path.

In contrast, if this is a one-hot machine then we see
this transition must start in state[0] because flop
state_reg[0] is set (pin state_reg[0]/QN

falling), and must end in state[1] because flop
state_reg[1] is being set (state_reg[1]/D is
rising).

Now that the particular transition has been
identified it may be recoded to speed up the path.

When using extract the state flops for one-hot
machines are given the names of the corresponding
states. This makes path analysis particularly
straightforward.

9.0 Synthesis strategies
If you are using extract then there aren’t many
useful compile options. Flattening is ignored, so all
you can do is turn structuring on and off.

For a one-hot machine flattening may provide some
benefit. As usual the improvements vary widely
depending on your particular application [12].

One interesting technique to experiment with is
pipeline retiming with the balance_registers
command. This is intended primarily for pipelined

6. Hopefully this will be fixed in a future version.
7. This works even if you specify these groups on

unmapped logic. As the flops are mapped during the com-
pile, Design Compiler automatically changes the flop pin
names used in the path groupings.
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Table 1 -- Compile results for example state machines

compile for max speed compile for min area

slack
(ns)

area
run time
(minutes)

slack
(ns)

area
run time
(minutes)

prep3

8 states, 12 transitions, 8 inputs, 8 outputs

coded for extract

binary -5.41 228 -8.84 166

one_hot -5.19 227 -11.59 196

auto_3 -5.95 214 <2 -7.29 164 <2

auto_4 -5.01 234 -8.55 159

auto_5 -5.43 229 -8.55 159

no extract (binary) -4.56 216 -12.22 169

coded for one_hot

structure -3.86 221 -12.23 194

flatten -4.35 341 <2 -9.84 258 <2

flatten & structure -4.38 239 -11.93 193

prep4

16 states, 40 transitions, 8 inputs, 8 outputs

coded for extract

binary -7.33 298 -15.50 195

one_hot -4.34 348 -10.96 255

auto_4 -6.42 283 <7 -13.16 190 <7

auto_5 -6.58 285 -14.63 184

auto_6 -8.30 279 -12.81 191

no extract (binary) -8.87 299 -17.03 204

coded for one_hot

structure -5.27 335 -10.30 259

flatten -5.90 475 <5 -13.79 370 <5

flatten & structure -5.04 342 -10.94 260
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sm40

40 states, 80 transitions, 63 inputs, 61 outputs

coded for extract

binary -5.19 931 100 -21.04 661 81

one_hot -2.82 912 27 -16.48 737 21

auto_6 -5.39 885 87 -18.60 668 61

auto_7 -5.71 979 76 -29.54 683 51

auto_8 -5.63 933 69 -18.37 682 51

no extract (binary) -7.72 889 35 -31.73 604 6

coded for one_hot

structure -4.78 882 12 -16.59 761 7

flatten -7.38 3026 202 -49.68 2141 73

flatten & structure -4.41 905 28 -16.86 753 22

sm70

69 states, 116 transitions, 27 inputs, 16 outputs

coded for extract

binary -7.98 1030 17 -17.66 857 5

one_hot -3.12 1200 10 -8.28 1121 5

auto_7 -5.51 996 15 -14.67 849 6

auto_8 -5.69 975 13 -11.33 817 6

auto_9 -4.55 1018 19 -11.84 827 5

no extract (binary) -20.70 1249 49 -60.43 843 8

coded for one_hot

structure -7.92 1339 20 -35.77 1096 12

flatten -6.51 1852 36 -26.20 1548 23

flatten & structure -7.39 1326 29 -33.96 1104 18

Table 1 -- Compile results for example state machines (Continued)

compile for max speed compile for min area

slack
(ns)

area
run time
(minutes)

slack
(ns)

area
run time
(minutes)
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datapaths, but it does work with a single bank of
flops as in a state machine. The drawbacks are:

• The flops cannot have asynchronous resets

• Results may be affected by

compile_preserve_sync_resets = "true"

• State encodings change in unpredictable ways

10.0 Compile results
Four example state machines were used to compare
and illustrate the techniques outlined in this paper.
The results are shown in Table 1.

Two Verilog versions of each machine were
created: one highly-encoded for use with extract,
and the other one-hot encoded as per Section 4.2.

The highly-encoded version was extracted and
compiled with a variety of state encodings: binary,
one_hot, and auto with varying bit widths. In
addition the highly-encoded version was compiled
without using extract (thus using the binary
encoding specified in the source).

The one-hot version was compiled using a selection
of structuring and flattening options.

The Verilog listings for the prep3 and prep4
examples are given in the Appendix. Also listed are
VHDL versions of the prep4 machine. These
sources were also compiled, and the results were
similar to the Verilog runs shown in the table.

For the max speed runs the prep3 and prep4
examples had a 10ns clock, while the sm40 and
sm70 examples used a 20ns clock. The min area
runs used a max area constraint of 0. The target
library was the Synopsys class.db library.

All runs used Synopsys Design Compiler
Version v3.0b-12954 running on a SPARCstation 2
under SunOS 4.1.3.

11.0 Hints, tips, tricks, mysteries
• group -fsm sometimes gives you a broken state
machine. This doesn’t happen if you code the FSM
all alone in its module.

• reduce_fsm sometimes takes a long time, much
longer than the extract itself.

• Verilog users of extract: you have to define the
enum code parameters before declaring the reg
that uses it, and also before the state_vector
declaration. In the reg declaration enum code

must be between reg and the name:

reg [2:0] // synopsys enum code
   state, next_state ;

or

reg [2:0] /*synopsys enum code*/ state;

• A set_false_path from the asynchronous reset
port of an extracted FSM will prevent the state flops
from being mapped during compile. Apparently an
implicit dont_touch is placed on the flops. This is
no doubt a bug.

• When using auto state encoding, only the unen-
coded states are given new values. If you want to
replace all current encodings then do

   set_fsm_encoding {}
   set_fsm_encoding_style auto

• When using extract with auto encoding only the
minimum number of state flops are used. If you
have specified a larger number then usually, but not
always, you will get a warning about “truncating
state vector.” Do a report_fsm to be sure.

• The encoding picked by extract does not depend
on the applied constraints.

• Coding the same machine in Verilog and VHDL
and using extract gives identical state tables, but
the compile results are slightly different.

• If your HDL source specifies an output as don’t
care, this will not be reflected in the state table,
because prior to the extract you have to map into
gates first and that collapses the don’t care.

• Always do an ungroup before extract.

• set_fsm_encoding can’t handle more than 31
bits if you are using the ^H format. Instead use ^B
which works fine.

• Remove any unused inputs from your module
before doing an extract. They will be included in
the state table and it slows down the compile.

• Verilog users should infer flops using non-block-
ing assignments with non-zero intra-assignment
delays:

  always @ (posedge clk)
    myout <= #1 next_myout ;

This is not necessary for Synopsys but should make
your flops simulate correctly in all Verilog
simulators (e.g. Verilog-XL and VCS).

• Avoid using synchronous resets; it will probably
add many additional transitions to your machine.
For example the sm40 machine adds 26 transitions
for a total of 106, and the sm70 machine adds 60 for
a total of 176.
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If you must use synchronous resets then they should
be implemented as part of the flop inference and not
in the state machine description itself. Here is a
Verilog example modified from Listing 3:

  // build the state flops
  always @ (posedge clk)
    begin
    if (!rst)
      state <= #1 S0 ;
    else
      state <= #1 next_state ;
    end

and a VHDL example modified from Listing 5:

  -- build the state flops
  process (clk)
  begin
    if clk='1' and clk'event then
      if rst='0' then
        state <= S0 ;
      else
        state <= next_state ;
      end if ;
    end if ;
  end process ;

• When using extract with auto encoding only the
minimum number of state flops are used. Neverthe-
less, specifying more than the minimum will affect
the state assignment and thus the compile results.

• Why is extract better at flattening a design than
compile using set_flatten?
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A.0 Appendix
The following example state machines are taken
from the PREP benchmark suite [9].

A.1 prep3

prep3 is a Mealy machine with eight states and 12
transitions. It has eight inputs and eight registered
outputs. Here is the state diagram:

Listing 1 is a Verilog implementation for use with
Synopsys FSM extract.

Listing 2 is a Verilog implementation that is one-hot
coded.
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Listing 1-- prep3.v
/*

** prep3.v

**

** prep benchmark 3 -- small state machine

** benchmark suite #1 -- version 1.2 -- March 28, 1993

** Programmable Electronics Performance Corporation

**

** binary state assignment -- highly encoded

*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;

input [7:0] in ;

output [7:0] out ;

parameter [2:0] // synopsys enum code

    START = 3'd0 ,

    SA    = 3'd1 ,

    SB    = 3'd2 ,

    SC    = 3'd3 ,

    SD    = 3'd4 ,

    SE    = 3'd5 ,

    SF    = 3'd6 ,

    SG    = 3'd7 ;

// synopsys state_vector state

reg [2:0] // synopsys enum code

    state, next_state ;

reg [7:0] out, next_out ;

always @ (in or state) begin

    // default values

    next_state = START ;

    next_out = 8'bx ;

    // state machine

    case (state) // synopsys parallel_case full_case

    START:

        if (in == 8'h3c) begin

            next_state = SA ;

            next_out = 8'h82 ;

            end

        else begin

            next_state = START ;

            next_out = 8'h00 ;

            end

    SA:

        case (in) // synopsys parallel_case full_case

            8'h2a:

                begin

                next_state = SC ;

                next_out = 8'h40 ;

                end

            8'h1f:

                begin

                next_state = SB ;

                next_out = 8'h20 ;

                end

            default:

                begin

                next_state = SA ;

                next_out = 8'h04 ;

                end

            endcase

    SB:

        if (in == 8'haa) begin

            next_state = SE ;

            next_out = 8'h11 ;

            end

        else begin

            next_state = SF ;

            next_out = 8'h30 ;

            end

    SC:

        begin

        next_state = SD ;

        next_out = 8'h08 ;

        end

    SD:

        begin

        next_state = SG ;

        next_out = 8'h80 ;

        end

    SE:

        begin

        next_state = START ;

        next_out = 8'h40 ;

        end

    SF:

        begin

        next_state = SG ;

        next_out = 8'h02 ;

        end

    SG:

        begin

        next_state = START ;

        next_out = 8'h01 ;

        end

    endcase

    end

// build the state flops

always @ (posedge clk or negedge rst)

    begin

    if (!rst)   state <= #1 START ;

    else        state <= #1 next_state ;

    end

// build the output flops

always @ (posedge clk or negedge rst)

    begin

    if (!rst)   out <= #1 8'b0 ;

    else        out <= #1 next_out ;

    end

endmodule
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Listing 2 -- prep3_onehot.v
/*

** prep3_onehot.v

**

** prep benchmark 3 -- small state machine

** benchmark suite #1 -- version 1.2 -- March 28, 1993

** Programmable Electronics Performance Corporation

**

** one-hot state assignment

*/

module prep3 (clk, rst, in, out) ;

input clk, rst ;

input [7:0] in ;

output [7:0] out ;

parameter [2:0]

    START = 0 ,

    SA    = 1 ,

    SB    = 2 ,

    SC    = 3 ,

    SD    = 4 ,

    SE    = 5 ,

    SF    = 6 ,

    SG    = 7 ;

reg [7:0] state, next_state ;

reg [7:0] out, next_out ;

always @ (in or state) begin

    // default values

    next_state = 8'b0 ;

    next_out = 8'bx ;

    case (1'b1) // synopsys parallel_case full_case

    state[START]:

        if (in == 8'h3c) begin

            next_state[SA] = 1'b1 ;

            next_out = 8'h82 ;

            end

        else begin

            next_state[START] = 1'b1 ;

            next_out = 8'h00 ;

            end

    state[SA]:

        case (in) // synopsys parallel_case full_case

            8'h2a:

                begin

                next_state[SC] = 1'b1 ;

                next_out = 8'h40 ;

                end

            8'h1f:

                begin

                next_state[SB] = 1'b1 ;

                next_out = 8'h20 ;

                end

            default:

                begin

                next_state[SA] = 1'b1 ;

                next_out = 8'h04 ;

                end

            endcase

    state[SB]:

        if (in == 8'haa) begin

            next_state[SE] = 1'b1 ;

            next_out = 8'h11 ;

            end

        else begin

            next_state[SF] = 1'b1 ;

            next_out = 8'h30 ;

            end

    state[SC]:

        begin

        next_state[SD] = 1'b1 ;

        next_out = 8'h08 ;

        end

    state[SD]:

        begin

        next_state[SG] = 1'b1 ;

        next_out = 8'h80 ;

        end

    state[SE]:

        begin

        next_state[START] = 1'b1 ;

        next_out = 8'h40 ;

        end

    state[SF]:

        begin

        next_state[SG] = 1'b1 ;

        next_out = 8'h02 ;

        end

    state[SG]:

        begin

        next_state[START] = 1'b1 ;

        next_out = 8'h01 ;

        end

    endcase

    end

// build the state flops

always @ (posedge clk or negedge rst)

    begin

    if (!rst)  state <= #1 1'b1 << START ;

    else       state <= #1 next_state ;

    end

// build the output flops

always @ (posedge clk or negedge rst)

    begin

    if (!rst)   out <= #1 8'b0 ;

    else        out <= #1 next_out ;

    end

endmodule
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A.2 prep4

prep4 is a Moore machine with sixteen states and
40 transitions. It has eight inputs and eight
unregistered outputs. Here is the state diagram:

Listing 3 is a Verilog implementation for use with
Synopsys FSM extract.

Listing 4 is a Verilog implementation that is one-hot
coded.

Listing 5 is a VHDL implementation for use with
Synopsys FSM extract.

Listing 6 is a VHDL implementation that is one-hot
coded.

I > 63
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Listing 3 -- prep4.v
/*

** prep4.v

**

** prep benchmark 4 -- large state machine

** benchmark suite #1 -- version 1.2 -- March 28, 1993

** Programmable Electronics Performance Corporation

**

** binary state assignment -- highly encoded

*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;

input [7:0] in ;

output [7:0] out ;

parameter [3:0] // synopsys enum code

  S0  = 4'd0 ,  S1  = 4'd1 ,  S2  = 4'd2 ,  S3  = 4'd3 ,

  S4  = 4'd4 ,  S5  = 4'd5 ,  S6  = 4'd6 ,  S7  = 4'd7 ,

  S8  = 4'd8 ,  S9  = 4'd9 ,  S10 = 4'd10 , S11 = 4'd11 ,

  S12 = 4'd12 , S13 = 4'd13 , S14 = 4'd14 , S15 = 4'd15 ;

// synopsys state_vector state

reg [3:0] /* synopsys enum code */ state, next_state ;

reg [7:0] out ;

// state machine

always @ (in or state) begin

  // default value

  next_state = S0 ; // always overridden

  case (state) // synopsys parallel_case full_case

    S0: case(1'b1) // synopsys parallel_case full_case

          (in == 8'd0):               next_state = S0 ;

          (8'd0 < in && in < 8'd4):   next_state = S1 ;

          (8'd3 < in && in < 8'd32):  next_state = S2 ;

          (8'd31 < in && in < 8'd64): next_state = S3 ;

          (in > 8'd63):               next_state = S4 ;

          endcase

    S1: if (in[0] && in[1])   next_state = S0 ;

        else                  next_state = S3 ;

    S2: next_state = S3 ;

    S3: next_state = S5 ;

    S4: if (in[0] || in[2] || in[4])  next_state = S5 ;

        else                          next_state = S6 ;

    S5: if (in[0] == 1'b0)    next_state = S5 ;

        else                  next_state = S7 ;

    S6: case(in[7:6]) // synopsys parallel_case full_case

          2'b11:  next_state = S1 ;

          2'b00:  next_state = S6 ;

          2'b01:  next_state = S8 ;

          2'b10:  next_state = S9 ;

          endcase

    S7: case(in[7:6]) // synopsys parallel_case full_case

          2'b00:  next_state = S3 ;

          2'b11:  next_state = S4 ;

          2'b10,

          2'b01:  next_state = S7 ;

          endcase

    S8: if(in[4] ^ in[5])       next_state = S11 ;

        else if (in[7])         next_state = S1 ;

        else                    next_state = S8 ;

    S9: if (in[0] == 1'b0)      next_state = S9 ;

        else                    next_state = S11 ;

    S10:  next_state = S1 ;

    S11:  if (in == 8'd64)      next_state = S15 ;

          else                  next_state = S8 ;

    S12:  if (in == 8'd255)     next_state = S0 ;

          else                  next_state = S12 ;

    S13:  if (in[1] ^ in[3] ^ in[5])  next_state = S12 ;

          else                        next_state = S14 ;

    S14:  case(1'b1) // synopsys parallel_case full_case

(in == 8'd0): next_state = S14 ;

(8'd0 < in && in < 8'd64): next_state = S12 ;

(in > 8'd63): next_state = S10 ;

            endcase

    S15:  if (in[7] == 1'b0)      next_state = S15 ;

          else

            case (in[1:0])

              // synopsys parallel_case full_case

              2'b11:  next_state = S0 ;

              2'b01:  next_state = S10 ;

              2'b10:  next_state = S13 ;

              2'b00:  next_state = S14 ;

              endcase

    endcase

  end

// outputs

always @ (state) begin

  // default value

  out = 8'bx ;

  case (state) // synopsys parallel_case full_case

    S0: out = 8'b00000000 ;

    S1: out = 8'b00000110 ;

    S2: out = 8'b00011000 ;

    S3: out = 8'b01100000 ;

    S4: begin

        out[7] = 1'b1 ; out[0] = 1'b0 ;

        end

    S5: begin

        out[6] = 1'b1 ; out[1] = 1'b0 ;

        end

    S6: out = 8'b00011111 ;

    S7: out = 8'b00111111 ;

    S8: out = 8'b01111111 ;

    S9: out = 8'b11111111 ;

    S10:  begin

          out[6] = 1'b1 ; out[4] = 1'b1 ;

          out[2] = 1'b1 ; out[0] = 1'b1 ;

          end

    S11:  begin

          out[7] = 1'b1 ; out[5] = 1'b1 ;

          out[3] = 1'b1 ; out[1] = 1'b1 ;

          end

    S12:  out = 8'b11111101 ;

    S13:  out = 8'b11110111 ;

    S14:  out = 8'b11011111 ;

    S15:  out = 8'b01111111 ;

    endcase

  end

// build the state flops

always @ (posedge clk or negedge rst)

  begin

  if (!rst) state <= #1 S0 ;

  else      state <= #1 next_state ;

  end

endmodule
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Listing 4 -- prep4_onehot.v
/*

** prep4_onehot.v

**

** prep benchmark 4 -- large state machine

** benchmark suite #1 -- version 1.2 -- March 28, 1993

** Programmable Electronics Performance Corporation

**

** one-hot state assignment

*/

module prep4 (clk, rst, in, out) ;

input clk, rst ;

input [7:0] in ;

output [7:0] out ;

parameter [3:0]

  S0  = 4'd0 ,  S1  = 4'd1 ,  S2  = 4'd2 ,  S3  = 4'd3 ,

  S4  = 4'd4 ,  S5  = 4'd5 ,  S6  = 4'd6 ,  S7  = 4'd7 ,

  S8  = 4'd8 ,  S9  = 4'd9 ,  S10 = 4'd10 , S11 = 4'd11 ,

  S12 = 4'd12 , S13 = 4'd13 , S14 = 4'd14 , S15 = 4'd15 ;

reg [15:0] state, next_state ;

reg [7:0] out ;

// state machine

always @ (in or state) begin

  // default value

  next_state = 16'b0 ;  // only one bit overridden

  case (1'b1) // synopsys parallel_case full_case

   state[S0]:

     case(1'b1) // synopsys parallel_case full_case

(in == 8'd0): next_state[S0] = 1'b1 ;

(8'd0 < in && in < 8'd4): next_state[S1] = 1'b1 ;

(8'd3 < in && in < 8'd32): next_state[S2] = 1'b1 ;

(8'd31 < in && in < 8'd64): next_state[S3] = 1'b1 ;

(in > 8'd63): next_state[S4] = 1'b1 ;

       endcase

state[S1]: if (in[0] && in[1]) next_state[S0] = 1'b1 ;

else next_state[S3] = 1'b1 ;

   state[S2]:  next_state[S3] = 1'b1 ;

   state[S3]:  next_state[S5] = 1'b1 ;

   state[S4]:

if (in[0] || in[2] || in[4]) next_state[S5] = 1'b1 ;

else next_state[S6] = 1'b1 ;

state[S5]: if (in[0] == 1'b0) next_state[S5] = 1'b1 ;

else next_state[S7] = 1'b1 ;

   state[S6]:

     case(in[7:6]) // synopsys parallel_case full_case

       2'b11:  next_state[S1] = 1'b1 ;

       2'b00:  next_state[S6] = 1'b1 ;

       2'b01:  next_state[S8] = 1'b1 ;

       2'b10:  next_state[S9] = 1'b1 ;

       endcase

   state[S7]:

     case(in[7:6]) // synopsys parallel_case full_case

       2'b00:  next_state[S3] = 1'b1 ;

       2'b11:  next_state[S4] = 1'b1 ;

       2'b10,

       2'b01:  next_state[S7] = 1'b1 ;

       endcase

state[S8]: if(in[4] ^ in[5]) next_state[S11] = 1'b1 ;

else if (in[7]) next_state[S1] = 1'b1 ;

else next_state[S8] = 1'b1 ;

state[S9]: if (in[0] == 1'b0) next_state[S9] = 1'b1 ;

else next_state[S11] = 1'b1 ;

   state[S10]: next_state[S1] = 1'b1 ;

   state[S11]: if (in == 8'd64)  next_state[S15] = 1'b1 ;

               else              next_state[S8] = 1'b1 ;

   state[S12]: if (in == 8'd255) next_state[S0] = 1'b1 ;

               else              next_state[S12] = 1'b1 ;

   state[S13]:

     if (in[1] ^ in[3] ^ in[5])  next_state[S12] = 1'b1 ;

     else                        next_state[S14] = 1'b1 ;

   state[S14]:

     case(1'b1) // synopsys parallel_case full_case

(in == 8'd0): next_state[S14] = 1'b1 ;

(8'd0 < in && in < 8'd64): next_state[S12] = 1'b1 ;

(in > 8'd63): next_state[S10] = 1'b1 ;

       endcase

   state[S15]:

     if (in[7] == 1'b0)      next_state[S15] = 1'b1 ;

     else

       case (in[1:0]) // synopsys parallel_case full_case

         2'b11:  next_state[S0] = 1'b1 ;

         2'b01:  next_state[S10] = 1'b1 ;

         2'b10:  next_state[S13] = 1'b1 ;

         2'b00:  next_state[S14] = 1'b1 ;

         endcase

   endcase

  end

// outputs

always @ (state) begin

  // default value

  out = 8'bx ;

  case (1'b1) // synopsys parallel_case full_case

    state[S0]:  out = 8'b00000000 ;

    state[S1]:  out = 8'b00000110 ;

    state[S2]:  out = 8'b00011000 ;

    state[S3]:  out = 8'b01100000 ;

    state[S4]:  begin

        out[7] = 1'b1 ; out[0] = 1'b0 ;

        end

    state[S5]:  begin

        out[6] = 1'b1 ; out[1] = 1'b0 ;

        end

    state[S6]:  out = 8'b00011111 ;

    state[S7]:  out = 8'b00111111 ;

    state[S8]:  out = 8'b01111111 ;

    state[S9]:  out = 8'b11111111 ;

    state[S10]: begin

        out[6] = 1'b1 ; out[4] = 1'b1 ;

        out[2] = 1'b1 ; out[0] = 1'b1 ;

        end

    state[S11]: begin

        out[7] = 1'b1 ; out[5] = 1'b1 ;

        out[3] = 1'b1 ; out[1] = 1'b1 ;

        end

    state[S12]: out = 8'b11111101 ;

    state[S13]: out = 8'b11110111 ;

    state[S14]: out = 8'b11011111 ;

    state[S15]: out = 8'b01111111 ;

    endcase

  end

// build the state flops

always @ (posedge clk or negedge rst)

  begin

  if (!rst) state <= #1 1'b1 << S0 ;

  else      state <= #1 next_state ;

  end

endmodule
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Listing 5 -- prep4.vhd
-- prep4.vhd

--

-- prep benchmark 4 -- large state machine

-- benchmark suite #1 -- version 1.2 -- March 28, 1993

-- Programmable Electronics Performance Corporation

--

-- binary state assignment, highly encoded

library IEEE ;

use IEEE.std_logic_1164.all ;

use IEEE.std_logic_arith.all ;

package typedef is

  subtype byte is std_logic_vector (7 downto 0) ;

  subtype bytein is bit_vector (7 downto 0) ;

end typedef ;

library IEEE ;

use IEEE.std_logic_1164.all ;

use IEEE.std_logic_arith.all ;

use work.typedef.all ;

entity prep4 is

  port ( clk,rst : in std_logic ;

    I : in byte ;

    O : out byte) ;

end prep4 ;

architecture behavior of prep4 is

  type state_type is (S0, S1, S2, S3,

    S4, S5, S6, S7, S8, S9, S10, S11,

    S12, S13, S14, S15) ;

  signal state, next_state : state_type ;

  attribute state_vector : string ;

  attribute state_vector of behavior :

    architecture is "state" ;

  signal Iin : bytein ;

begin

  process (I)

  begin

    Iin <= to_bitvector(I);

  end process ;

  -- state machine

  process (Iin, state)

  begin

    -- default value

    next_state <= S0 ;

    case state is

    when S0 =>

      if (Iin = X"00") then

        next_state <= S0;

        end if ;

      if (x"00" < Iin) and (Iin < x"04") then

        next_state <= S1;

        end if;

      if (x"03" < Iin) and (Iin < x"20") then

        next_state <= S2;

        end if;

      if (x"1f" < Iin) and (Iin < x"40") then

        next_state <= S3;

        end if;

      if (x"3f" < Iin) then

        next_state <= S4;

        end if;

    when S1 =>

      if (Iin(1) and Iin(0)) = '1' then

        next_state <= S0;

      else

        next_state <= S3;

        end if ;

    when S2 =>

      next_state <= S3 ;

    when S3 =>

      next_state <= S5 ;

    when S4 =>

      if (Iin(0) or Iin(2) or Iin(4)) = '1' then

        next_state <= S5 ;

      else

        next_state <= S6 ;

        end if ;

    when S5 =>

      if (Iin(0) = '0') then

        next_state <= S5 ;

      else

        next_state <= S7 ;

        end if ;

    when S6 =>

      case Iin(7 downto 6) is

        when b"11" => next_state <= S1 ;

        when b"00" => next_state <= S6 ;

        when b"01" => next_state <= S8 ;

        when b"10" => next_state <= S9 ;

        end case ;

    when S7 =>

      case Iin(7 downto 6) is

        when b"00" => next_state <= S3 ;

        when b"11" => next_state <= S4 ;

        when b"01" => next_state <= S7 ;

        when b"10" => next_state <= S7 ;

        end case ;

    when S8 =>

      if (Iin(4) xor Iin(5)) = '1'  then

        next_state <= S11 ;

      elsif Iin(7) = '1' then

        next_state <= S1 ;

      else

        next_state <= S8 ;

        end if;

    when S9 =>

      if (Iin(0) = '1') then

        next_state <= S11 ;

      else

        next_state <= S9 ;

        end if;

    when S10 =>

      next_state <= S1 ;

    when S11 =>

      if Iin = x"40" then

        next_state <= S15 ;

      else

        next_state <= S8 ;

        end if ;

    when S12 =>

      if Iin = x"ff" then

        next_state <= S0 ;

      else

        next_state <= S12 ;

        end if ;

    when S13 =>

      if (Iin(1) xor Iin(3) xor Iin(5)) = '1' then

        next_state <= S12 ;

      else

        next_state <= S14 ;

        end if ;
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    when S14 =>

      if (Iin > x"3f") then

        next_state <= S10 ;

      elsif (Iin = x"00") then

        next_state <= S14 ;

      else

        next_state <= S12 ;

        end if ;

    when S15 =>

      if Iin(7) = '0' then

        next_state <= S15 ;

      else

        case Iin(1 downto 0) is

          when b"11" => next_state <= S0 ;

          when b"01" => next_state <= S10 ;

          when b"10" => next_state <= S13 ;

          when b"00" => next_state <= S14 ;

          end case ;

        end if ;

    end case ;

  end process;

  -- outputs

  process (state)

  begin

    -- default value is don't care

    O <= byte'(others => 'X') ;

    case state is

      when S0 =>  O <= "00000000" ;

      when S1 =>  O <= "00000110" ;

      when S2 =>  O <= "00011000" ;

      when S3 =>  O <= "01100000" ;

      when S4 =>

          O(7) <= '1' ;

          O(0) <= '0' ;

      when S5 =>

          O(6) <= '1' ;

          O(1) <= '0' ;

      when S6 =>  O <= "00011111" ;

      when S7 =>  O <= "00111111" ;

      when S8 =>  O <= "01111111" ;

      when S9 =>  O <= "11111111" ;

      when S10 =>

          O(6) <='1' ;

          O(4) <='1' ;

          O(2) <='1' ;

          O(0) <='1' ;

      when S11 =>

          O(7) <='1' ;

          O(5) <='1' ;

          O(3) <='1' ;

          O(1) <='1' ;

      when S12 => O <= "11111101" ;

      when S13 => O <= "11110111" ;

      when S14 => O <= "11011111" ;

      when S15 => O <= "01111111" ;

      end case ;

  end process;

  -- build the state flops

  process (clk, rst)

  begin

    if rst='0' then

      state <= S0 ;

    elsif clk='1' and clk'event then

      state <= next_state ;

    end if ;

  end process ;

end behavior ;

Listing 6 -- prep4_onehot.vhd
-- prep4_onehot.vhd

--

-- prep benchmark 4 -- large state machine

-- benchmark suite #1 -- version 1.2 -- March 28, 1993

-- Programmable Electronics Performance Corporation

--

-- one-hot state assignment

library IEEE ;

use IEEE.std_logic_1164.all ;

use IEEE.std_logic_arith.all ;

package typedef is

  subtype state_vec is std_logic_vector (0 to 15) ;

  subtype byte is std_logic_vector (7 downto 0) ;

  subtype bytein is bit_vector (7 downto 0) ;

end typedef ;

library IEEE ;

use IEEE.std_logic_1164.all ;

use IEEE.std_logic_arith.all ;

use work.typedef.all ;

entity prep4 is

  port ( clk,rst : in std_logic ;

      I : in byte ;

      O : out byte) ;

end prep4 ;

architecture behavior of prep4 is

  signal state, next_state : state_vec ;

  signal Iin : bytein ;

begin

  process (I)

  begin

    Iin <= to_bitvector(I);

  end process ;

  -- state machine

  process (Iin, state)

  begin

    -- default value

    next_state <= state_vec'(others => '0') ;

    if state(0) = '1' then

      if (Iin = X"00") then

        next_state(0) <= '1';       end if ;

      if (x"00" < Iin) and (Iin < x"04") then

        next_state(1) <= '1';       end if;

      if (x"03" < Iin) and (Iin < x"20") then

        next_state(2) <= '1';       end if;

      if (x"1f" < Iin) and (Iin < x"40") then

        next_state(3) <= '1';       end if;

      if (x"3f" < Iin) then

        next_state(4) <= '1';       end if;

      end if;

    if state(1) = '1' then

      if (Iin(1) and Iin(0)) = '1' then

        next_state(0) <= '1';

      else

        next_state(3) <= '1';       end if ;

      end if ;

    if state(2) = '1' then

      next_state(3) <= '1' ;

      end if;
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    if state(3) = '1' then

      next_state(5) <= '1' ;

      end if;

    if state(4) = '1' then

      if (Iin(0) or Iin(2) or Iin(4)) = '1' then

        next_state(5) <= '1' ;

      else

        next_state(6) <= '1' ;        end if ;

      end if;

    if state(5) = '1' then

      if (Iin(0) = '0') then

        next_state(5) <= '1' ;

      else

        next_state(7) <= '1' ;        end if ;

      end if;

    if state(6) = '1' then

      case Iin(7 downto 6) is

        when b"11" => next_state(1) <= '1' ;

        when b"00" => next_state(6) <= '1' ;

        when b"01" => next_state(8) <= '1' ;

        when b"10" => next_state(9) <= '1' ;

        end case ;

      end if;

    if state(7) = '1' then

      case Iin(7 downto 6) is

        when b"00" => next_state(3) <= '1' ;

        when b"11" => next_state(4) <= '1' ;

        when b"01" => next_state(7) <= '1' ;

        when b"10" => next_state(7) <= '1' ;

        end case ;

      end if;

    if state(8) = '1' then

      if (Iin(4) xor Iin(5)) = '1'  then

        next_state(11) <= '1' ;

      elsif Iin(7) = '1' then

        next_state(1) <= '1' ;

      else

        next_state(8) <= '1' ;        end if;

      end if;

    if state(9) = '1' then

      if (Iin(0) = '1') then

        next_state(11) <= '1' ;

      else

        next_state(9) <= '1' ;        end if;

      end if;

    if state(10) = '1' then

      next_state(1) <= '1' ;

      end if ;

    if state(11) = '1' then

      if Iin = x"40" then

        next_state(15) <= '1' ;

      else

        next_state(8) <= '1' ;        end if ;

      end if ;

    if state(12) = '1' then

      if Iin = x"ff" then

        next_state(0) <= '1' ;

      else

        next_state(12) <= '1' ;       end if ;

      end if ;

    if state(13) = '1' then

      if (Iin(1) xor Iin(3) xor Iin(5)) = '1' then

        next_state(12) <= '1' ;

      else

        next_state(14) <= '1' ;       end if ;

      end if ;

    if state(14) = '1' then

      if (Iin > x"3f") then

        next_state(10) <= '1' ;

      elsif (Iin = x"00") then

        next_state(14) <= '1' ;

      else

        next_state(12) <= '1' ;       end if ;

      end if ;

    if state(15) = '1' then

      if Iin(7) = '0' then

        next_state(15) <= '1' ;

      else

        case Iin(1 downto 0) is

          when b"11" => next_state(0) <= '1' ;

          when b"01" => next_state(10) <= '1' ;

          when b"10" => next_state(13) <= '1' ;

          when b"00" => next_state(14) <= '1' ;

          end case ;

        end if ;

      end if ;

  end process;

  -- outputs

  process (state)

  begin

    -- default value is don't care

    O <= byte'(others => 'X') ;

    if state(0) = '1' then  O <= "00000000" ; end if ;

    if state(1) = '1' then  O <= "00000110" ; end if ;

    if state(2) = '1' then  O <= "00011000" ; end if ;

    if state(3) = '1' then  O <= "01100000" ; end if ;

    if state(4) = '1' then

      O(7) <= '1' ;

      O(0) <= '0' ;

      end if ;

    if state(5) = '1' then

      O(6) <= '1' ;

      O(1) <= '0' ;

      end if ;

    if state(6) = '1' then  O <= "00011111" ; end if ;

    if state(7) = '1' then  O <= "00111111" ; end if ;

    if state(8) = '1' then  O <= "01111111" ; end if ;

    if state(9) = '1' then  O <= "11111111" ; end if ;

    if state(10) = '1' then

      O(6) <='1' ;

      O(4) <='1' ;

      O(2) <='1' ;

      O(0) <='1' ;

      end if ;

    if state(11) = '1' then

      O(7) <='1' ;

      O(5) <='1' ;

      O(3) <='1' ;

      O(1) <='1' ;

      end if ;

    if state(12) = '1' then O <= "11111101" ; end if ;

    if state(13) = '1' then O <= "11110111" ; end if ;

    if state(14) = '1' then O <= "11011111" ; end if ;

    if state(15) = '1' then O <= "01111111" ; end if ;

  end process;

  -- build the state flops

  process (clk, rst)

  begin

    if rst='0' then

      state <= state_vec'(others => '0') ;

      state(0) <= '1' ;

    elsif clk='1' and clk'event then

      state <= next_state ;

    end if ;

  end process ;

end behavior ;
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