My Favoritedc_shel I Tricks

Steve Golson

Trilobyte Systems, 33 Sunset Road, Carlise MA 01741
Phone: 508/369-9669
Fax: 508/371-9964
Email: sgolson@trilobyte.com

Abstract™: You can make dc_shel | do amazing and wonderful things.

1.0Lists

dc_shel | supportslists using list expressions delineated by curly braces:
dc_shell>listl = {a, b, c d e}
{"a", "b", "c", "d", "e"}
You can separate list elements with either commas or spaces, but dc_shel | aways uses commas when
displaying alist.
Lists can be concatenated using the + operator:
dc_shell> list2 = {f g h}
{"f*, "g", "h")
dc_shell> list3 = listl + |list2
{"a", "b", "c¢c", "d", "e", "f", "g", "h"}
You can add elementsto alist in asimilar way:
dc_shell>list2 =1listl +f + g
{"a", "b", "c", "d", "e", "f", "g"}
but watch what happensiif you put the new elements at the beginning:
dc_shell> list2 =f + g + listl
{"fg", "a", "b", "c", "d", "e"}
Thefirst + concatenates the two strings" f " and " g" intoasingle string" f g" , and then the new string is
added to the beginning of the list. Instead try
dc_shell> list2 = {f g} + listl
{"f*, "g", "a", "b", "c", "d", "e"}
You can also subtract elements from alist:
dc_shell>1list2 = {f gabc d e}
{"f*, "g", "a", "b", "c", "d", "e"}
dc_shell>1list3 =1list2 - a
{"f*, "g", "b", "c", "d", "e"}
This can be very useful for reordering the elements of alist. We can move element " a" to the end by
subtracting it and adding it in a single command:
dc_shell>1list2 = {f gabc d e}
{"f", "g", "a", "b", "c", "d", "e"}
dc_shell>list3 =1ist2 - a + a
{"f", "g", "b", "c", "d", "e", "a"}

t. An earlier version of this paper was presented at the 1995 Synopsys User’s Group Conference.

1. | keep my module names in an alphabetical list, and use thistrick to reorder the list so that certain modules are at
theend (e.g. if | want to compile all modulesusing asinglef or each loop, but hierarchical modules need to compile
after all the leaf modules).

© 1995 Steve Golson Page 1

My Favoritedc_shel | Tricks

If you have duplicate elements they will all be removed with a single subtraction:

dc_shell>1list2 ={a b ab c d a}
{"a", "b", "a", "b", "c", "d", "a"}
dc_shell>1list3 =1list2 - a

{"b", "b", "c", "d"}
Remember that objects can be typed, and that the typing isinvisible. The subtraction only removes elements
with the proper type:

dc_shell> list2 = find(net,clk) + find(port,clk) + find(clock, clk)
{"cl k", "clk", "clk"}
dc_shell> list3 = 1list2 - find(net,clk)
{"clk", "clk"}

but subtracting a string constant will remove all objects with that name, regardless of type:
dc_shell> list2 = find(net,clk) + find(port,clk) + find(clock, clk)
{"clk", "clk", "clk"}
dc_shell> list3 = list2 - "clk"
{}

Hereishow to use list subtraction to ensure that the current directory is at the beginning of your search path:

dc_shel | > search_path = search_path -
{"/usr/synopsys/libraries/syn"}

dc_shel |l > search_path = "." + search_path
{".", "lusr/synopsys/libraries/syn"}

You can have lists of lists:

dc_shell>list2 = {a b c {de f}}
{"a", "b", "c", {"d", "e", "f"}}

dc_shel I > foreach (elenent, list2) {
list el enment
}

element = "a"

el ement = "b"

el ement = "¢"

element = {"d", "e", "f"}

Hereis how to extract the first element of alist®:

dc_shel Il > foreach (first_elenment, list2) {
br eak
}

1

dc_shell> list first_el enent

first _element = "a"

Exercise for the reader: build a function that returns everything except the first element of a list3. You must
handle duplicates and lists of lists correctly.

2. car, for all you LISP hackers.
3. cdr, for al you LISP hackers.

Page 2 © 1995 Steve Golson

My Favoritedc_shel | Tricks

2.0 Wildcards

dc_shel | supportswildcards using the* character. Thusif you want to find all the designs loaded into
memory you can say

all _the_designs = find(design,"*")

Actualy, if you givef i nd noargument at al, the" *" isimplied. Thus we can be a bit more succinct:
all _the_designs = find(design)

If wewant to find all designs except those created by DesignWare (adders, comparators, etc.) we can say:
all _the_designs = find(design) - find(design,"*DW")

3.0 Variable names
Be careful using nameslikedesi gn. It isabad ideato do things like
design = current_design
because further in your script you will no doubt try
fi nd(desi gn, f oobar)
which will die mysteriously. Always use names liket he_desi gn or ny_desi gn; they are much safer.
Another problem occurs due to variable typing. Consider the variable assignment

dc_shell > foo = lKj
" kj

But we might just as easily get
dc_shell > foo = Ikj
{"1ki"}

Inthefirst case, f 00 wasinitialized as a string variable:

dc_shel | > renpve_variabl e foo

Renovi ng variable 'foo'.

1

dc_shell> foo = ""

Warni ng: Defining new variable 'foo'. (EQ\ 10)

dc_shell > foo = | Kj
III kJ n

and in the second case as alist variable:

dc_shel I > renmove_vari abl e foo

Renovi ng variable 'foo'.

1

dc_shell > foo = {}

Warni ng: Defining new variable 'foo' . (EQN\N 10)

{}

dc_shell > foo = lKj

{"1ki")
This can cause many mysterious errors, particularly in f or each constructs. User enpve_vari abl e if
you aren't sure.

© 1995 Steve Golson Page 3

My Favoritedc_shel | Tricks

4.0 Quoting

dc_shel | hasafew specia characters. The double quote mark " is used to delineate a string expression.
The semicolon ; isaterminate statement and can be used to separate commands on asingleline:

dc_shel I > current _design ; pwd
Current design is 'foo'.
{Ilfooll}
"/ hone/ sgol son/ pl ay"
But what if we want to use these charactersinan al i as definition, or pass them to sh4?They must be

escaped with a backslash. Let’s say we want to use the shell echo command to echo a single semicolon.
From aregular shell prompt we can say

$ echo ";"

In order to passthisto sh frominsidedc_shel | , the quotes must be escaped:
dc_shell > sh "echo \";\""

Rather than quoting, we can escape the semicolon in the shell:
$ echo \;

The corresponding dc_shel | version requires both the backs ash and the semicolon to be escaped:
dc_shell > sh "echo \\\;"

Now if we want to create an alias that does this, we have yet another level of quoting:

dc_shell > alias sem colon "sh \"echo \\\"\;\\\"\
1

dc_shel | > alias sem col on

sh "echo \";\""

1

dc_shel | > sem col on

and the second version looks like
dc_shell > alias sem colon "sh \"echo \\\\\\\;\""

1

dc_shel Il > alias sem col on
sh "echo \\\;"

1

dc_shel | > sem col on
5.0 Fun aliases

Put thisaliasinyour . synopsys_dc. set up file
alias sys_stat "sh \"(date ; ps xv | egrep 'dc_shell|PID)\""

4. Remember that sh invokes the Bourne shell, not csh.

Page 4 © 1995 Steve Golson

My Favoritedc_shel | Tricks

Then at interesting pointsin your script you can get arecord of wall clock time, CPU time, and process
statistics:
dc_shel | > sys_stat
Thu Mar 2 17:28:14 EST 1995
PID TT STAT TIME SL RE PAGEIN SIZE RSS LIM %PU %EM COMVAND
6805 p4 S 0:20 0 3 242 4676 660 xx 0.0 2.2 dc_shel

Here are some more fun ones:

alias tokyo tinme "sh \"env TZ=Japan date\""
alias newfie tine "sh \"env TZ=Canada/ Newf oundl and date\""

6.0 Thingsto do at startup
If you have many serversthat you rundc_shel | from, you might want to put the following in your
. synopsys_dc. set up file:
sh "echo Running on " hostnanme™"
sh cat /etc/nmotd
Thisleaves anice record in your log file.
Sometimes you can have mysterious initialization problems. It may be helpful to put messages like
echo End of ~sgol son/.synopsys_dc. set up
at the end of each . synopsys file.

7.0 How to get the cell name when you have the pin name

Given alist named t hepi ns, thisdc_shel | diascreatesalist namedt hecel | s which hasthe last
hierarchical element (i.e. the pin name) stripped off, thus leaving only the cell names.

alias get_thecells " \
sh \" \
(echo -n \\\"thecells = \\\" \\\; \
echo \"thepins\") | \
sed -e "s?/[N MM ML 3]2,?79° -e "SI,/ > tmp VTN
include tmp \; \
sh /binfrmtmp "

Caveats: t hepi ns must bealigt, i.e. it must have{} aroundit. There might be only one element in thelist,
however. If t hecel | s already exists, it had better be alist aswell. Also, sed may dieif you passit alist
that istoo many characters long.

Here is an example. Assume we want to find all the cells connected to port a. First useal | _connect ed
to find the pinsthat port a iswired up to:

dc_shell > thepins = all _connected(find(port, a))
{"n123"}

Not quiteright. What al | _connect ed findsisnet n123. It appears that what we really want isto find out
what is connected to net n123. We can do this by passing the output of thefirstal | _connect ed to
another al | _connect ed:

dc_shel I > thepins = all _connected(all _connected(find(port,a)))
{Ilm/ dll, IIU5/ gII, Ill-B/iII, IIU7/ U8/ all, Ilall}

© 1995 Steve Golson Page 5

My Favoritedc_shel | Tricks

Almost. Now we have port a itself showing up. So subtract that off, and we'll have only the pins connected
to port a, which is what we want:

dc_shell > thepins = all _connected(all _connected(find(port,a))) \
- find(port, a)
{"w/d", "Us/g", "Ue/i", "U7/U8/a"}

Now invokeget _t hecel | s:

dc_shel | > get _thecells

1

list thecells

thecells = {"Ww", "uUs5", "Ue", "U7/U8"}

8.0 Returning aresult from sh intodc_shel |

In the previous exampl e we passed the result of a shell command back into dc_shel | by writing to atemp
filethat later getsincluded indc_shel | . Thisis necessary because there is no way to pass an arbitrary
output from a shell command back into dc_shel | (i.e. there is nothing anal ogous to using backquote in
the shell for command substitution)®.

You might think that you could set an environment variablein sh, and thenuseget _uni x_vari abl e to
read it in. This doesn’t work, because sh can only affect the environment of the subshell it executesin, and
not the parent shell:

dc_shel I > sh "(FOO=hel p \; echo $FCO)"
hel p

1

dc_shel | > get __uni x_vari abl e("FQOO")

Normally sh returns a status back to dc_shel | : 0if no arguments are given, and 1 otherwise. Thisis not
very useful. We can instead make sh give us the 8-hit status returned by the shell command itself, by setting
thisvariable:

sh _returns_process_status = "true"

Now we can do fun things like usethe UNIX f i nd command to compare the date stamps on two files. Let's
say we are reading in our Verilog source files, but this takes along time. We might want to save each design
as an intermediate db file, and only read in the source if it is newer than the corresponding db file.

Thef i nd command in UNIX would look something like this:

find db_file -newer verilog_file -print
To generate the process statuswe uset est and command substitution:

test “find db_file -newer verilog file -print’
Fromwithindc_shel | thislookslike

sh(test "find db_file -newer verilog_file -print™)
s0 by passing the status of sh toi f we can determine which file is newer:

if (! sh(test “find db_file -newer verilog file -print®)) {
/* db _file is newer */
} else {
/* verilog_ file is newer */

}

5. Thereis now! Newer versions of Design Compiler havetheexecut e - s command.

Page 6 © 1995 Steve Golson

My Favoritedc_shel | Tricks

Noticethe! that sneaked in. Thisisbecause sh defines a“true” result as 0, and “false” otherwise.
dc_shel | isthe opposite! So we need to perform a boolean inversion.

What happensif db_fi | e doesn’t exist? Thenthef i nd command will fail, and thustheveril og file
is newer. Thisiswhy we don't say

find verilog file -newer db_file -print

becauseif db_fi | e doesn’t exist, thef i nd will fail, but we interpret that to meandb_f i | e isnewer,
when actually it doesn’t exist!

So we can conditionally read in all our modules as follows:

foreach (nodul e, the_nodul es) {
verilog file = sources_dir + "/" + module + ".v"
db_file = db_dir + "/" + nmodule + ".db"

echo ##### | ooking for db_file newer than verilog file
if (! sh(test “find db_file -newer verilog file -print®)) {

echo ##### found it -- reading db_file
read db _file
} else {

echo ##### not found -- reading verilog file
read -format verilog verilog_file
wite -out db _file nodul e

}
}

90RTKFM

Sure, the on-line manuals are nifty. Even so, you can still access the old reference manual pages using
hel p6 indc_shel | . Furthermore, you can display these manual pages from your UNIX prompt just like
all the other UNIX man pages! Put the following in your . cshr ¢ (or whatever) file:

alias synman "/usr/ucb/ man - M $SYNOPSYS/ doc/ syn/ man"

Now synnman conmand_nane from your UNIX prompt will call up the appropriate Synopsys manual
pages.

Thisis preferable to adding the Synopsys directory to your normal MANPATH variable, because there are too
many dc_shel | commands that have the same name as UNIX commands (e.g. f i nd).

10.0 Thermonuclear ungr oup
If you wish to completely remove al hierarchy in adesign, usually all you needtodois
ungroup -flatten -all
but adont _t ouch attribute on adesign, cell, or reference will prevent the ungr oup from proceeding.

Here isascript that will completely ungroup a design, no matter what. First it removesany dont _t ouch
attribute on designs in the hierarchy. Then it doesthe usual ungroup -flatten -all.

Now, aslong asthereisany hierarchy remaining (i.e. f i nd(- hi erar chy desi gn) istrue) thewhi | e
loop will be activeand thedont _t ouch attributeis removed from the cells and references that still haveit.
Then ungr oup again, and repeat until no more hierarchy remains.

6. Or man.

© 1995 Steve Golson Page 7

My Favoritedc_shel | Tricks

Theredirectionto/ dev/ nul | prevents the (sometimeslong!) lists of cells and references from being
echoed to thelog file.

/* renove dont_touch fromdesigns in hierarchy */
renove_attribute -quiet find(-hierarchy design) dont_touch
/* and ungroup */
ungroup -flatten -al
/* now ungroup any renai ning hierarchical cells and references */
whil e (find(-hierarchy design)) {
echo "#### find hierarchical cells and references on this | evel ####"
hier cells = filter(find(cell), \
"@s_hierarchical ==true") > /[dev/ nul
hier refs = filter(find(reference), \
"@s_hierarchical ==true") > /dev/null
echo "#### renove dont _touch fromcells ####"
renove_attribute -quiet find(cell,hier_cells) dont_touch
renove_attribute -quiet find(reference, hier_refs) dont_touch
echo "#### and ungroup ##H##"
ungroup -flatten -al

}
11.0 Convertingalist toastring

Somedc_shel | commands aways return alist, but you may want astring. Let’'s say you want to take the
output of get _att ri but e, and useit as an argument to another dc_shel I command:

/* find the direction of the pin */

direction = get_attribute(pin_name, pin_direction)
/* create a port in the current design */
create_port port_name -dir direction

Thiswon't work, because variabledi r ect i on isalist, and when you passittocr eat e_port bad
things will happen.

To get around this, if you know what values are expected, you can build ani f - el se construct that tries out
all the possible values in turn, and creates a new string variable:

/[* find the direction of the pin */
dirlist = get_attribute(pin_nane, pin_direction)

/* convert the direction froma list to a value */
if (dirlist =={in}) {

direction = "in"
} else if (dirlist == {out}) {
direction = "out"
} else {
direction = "inout"
}

/* create a port in the current design */
create_port port_nanme -dir direction

Another way isto use sh torun ased script on the list variable that strips off the braces.

Page 8 © 1995 Steve Golson

My Favoritedc_shel | Tricks

12.0al I cel I s. ss script
Here is a script that uses some of the tricks outlined here.

Given atechnology library, it creates adesign that contains one cell of each typein thelibrary. Thisis useful
when you are creating anew library.

[* @#)allcells.ss 1.1 11/21/94 19:27:15 */

/*

** allcells.ss

* *

** This script creates a new design containing one cell of each type
** in a given library. This is useful for testing new |libraries.

*/

/* change this to whatever library you want */
thelib = "vlib"

read thelib + ".db"

/* create a new design */
renove_design allcells
create_design allcells

current _design = allcells

/* initialize the port names and instance nanes */
portnum = 0
unum = 0

/* find all the cells in the library */
foreach(cell, find(lib_cell, thelib + "/*")) {

/* instance nane */
i nstance_nane = U + unum
unum = unum + 1

/* create a cell in the current design */
create_cell instance_nane cel

/* find all the pins on the library cell */

foreach(thepin, find(lib_pin, cell + "/*")) {
port _name = "p_" + portnum
net _name = "net" + portnum
portnum = portnum + 1

pin_name = cell + "/" + thepin

/* find the direction of the pin */
dirlist = get_attribute(pin_nane, pin_direction)

/* convert the direction froma list to a value */

if (dirlist == {in}) {
direction = "in"

© 1995 Steve Golson Page 9

My Favoritedc_shel | Tricks

} else if (dirlist == {out}) {

direction = "out"
} else {
direction = "inout"
}
i nstance_pin = instance_nane + "/" + thepin

/* create a port in the current design */
create_port port_nanme -dir direction

/* and a net */
create_net net_nane

/* now wire up the port and the pin */
connect _net net_name { instance_pin port_nane }

}
}

wite
/* end of script allcells.ss */

exit

Page 10 © 1995 Steve Golson

	Abstract: You can make dc_shell do amazing and wonderful things.
	1.0 Lists
	2.0 Wildcards
	3.0 Variable names
	4.0 Quoting
	5.0 Fun aliases
	6.0 Things to do at startup
	7.0 How to get the cell name when you have the pin name
	8.0 Returning a result from sh into dc_shell
	9.0 RTFM
	10.0 Thermonuclear ungroup
	11.0 Converting a list to a string
	12.0 allcells.ss script

