dc_perl : Enhancingdc_shel | using a Perl wrapper

Steve Golson

Trilobyte Systems, 33 Sunset Road, Carlise MA 01741
Phone: +1.508.369.9669
Fax: +1.508.371.9964
Email: sgolson@trilobyte.com

Abstract: Isthere a command that you wish dc_shel | had?

By using the Perl interpreter asa“wrapper” around dc_shel | , powerful extensionstodc_shel |
can becreated. dc_shel | commands can be generated by Perl, and the results analyzed by Perl in
real time (not post-processed). Further dc_shel | commands can be algorithmically generated by
Per| based on the given results.

Theuser interfaceisjust likedc_shel |, but with user-defined extensions. Thisapproach is
particularly suited for complex synthesis problemsthat currently requirelots of post-processing or
tedious human analysis.

The problem

dc_shel I providesasimple programming interface to Design Compiler (see Figure 1). However for many
complex synthesis tasks it has significant limitations, including:

* no subroutines

* no variable scoping

* limited arithmetic and logical operations

* primitive list processing

« inflexible extensibility (sh, execut e)

* primitive pattern matching (regular expressions)
What we need isa simple, flexible, and above all powerful way to extend dc_shel | . These extensions

should work both within scripts and interactively. All existing dc_shel | scripts should work without
modification.

Figure 1: normal dc_shel | configuration \—/J

batch script input

output to screen or logfile

Design
Compiler

interactive input

© 1997 Steve Golson Page 1

dc_per| : Enhancingdc_shel | using aPerl wrapper

A solution

What we need isfor dc_shel | to be more like Perl! Perl, the Practical Extraction and Report Language?,
is (to quote the manpage) an interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It's also a good language
for many system management tasks. Best of al, it's freely available and freely redistributable.

A Perl program called dc_per | has been developed. It parses a stream of commands entered interactively
or viabatch files, and determines which commands are Perl and whicharedc_shel | . The Perl commands
are evaluated directly, andthedc_shel | commands are passed via pipesto an actual dc_shel | process
running as a child under Perl. Output is controlled by thedc_per | wrapper, sodc_shel | command
output can be filtered and processed before being printed to the main dc_per | lodfile (see Figure 2).

Figure2: dc_per | configuration

batch script input

Perl interpreter

output to screen

or logfile pipe out
- _
dc_perl DeS|gn
interactive input - pipe in Compiler
L

dc_per| scriptscan bethought of in several ways: asdc_shel | scriptswith afew “extensions’, or as
Perl scripts that occasionally call dc_shel |, or anything in between.

1. Or depending on your level of experience, the Pathologically Eclectic Rubbish Lister.

Page 2 © 1997 Steve Golson

dc_per| : Enhancingdc_shel | using aPerl wrapper

Invokingdc_per |

dc_perl isinvoked from your usua UNIX command prompt:

uni x% dc_perl
dc_perl version 0.0
DC Prof essional (TM
DC Expert (TM
HDL Conpiler (TM

Version v3.4b -- Apr 01, 1996
Copyright (c) 1988-1995 by Synopsys, Inc.
ALL RI GHTS RESERVED

This programis proprietary and confidential information of Synopsys, |
and may be used and di scl osed only as authorized in a |icense agreenent
controlling such use and di scl osure.

Initializing...
dc_perl >

Thislookslikeanormal dc_shel | session, except adc_per | version number is displayed and the user
prompt is changed to dc_per | >.

The - f command-line switch can be used to specify adc_per | batch script. All other dc_shel |
command-line switches are passed through to thedc_shel | process.

dc_per| commands

All dc_shel | commandswork normally. These keywords are used to switch into the Perl interpreter:
&begi n_perl;

all lines between these two are evaluated by the perl interpreter
&end_perl ;

The following Perl commands are predefined for interfacing withdc_shel | :

&get _dc_shel | _vari abl e("vari abl e");

Getsthevalueof adc_shel | variable. Returns alist or scalar depending on the type of
dc_shel | variable.

&set _dc_shel | _vari abl e("vari abl e", val ue);
Setsthe value of the specified dc_shel | variable. If val ue isaPerl ligt, thenvari abl e is
assigned asadc_shel | list.

&dc_shel | _cnd(" conmand") ;

Executesthe given dc_shel | command string. The output is printed to standard output.

&get _dc_shel | _cnd("command");

Executesthe given dc_shel | command string, and returns the output instead of printing it. This
is used when you wish to filter or parse the output of the command.

Any non-comment line that has* &” asthe first non-whitespace character, and endswith a*“; ” isassumed to
be a Perl function and is evaluated by the Perl interpreter (i.e. if it looks like Perl it is assumed to be Perl).
This allows user-defined Perl subroutines to be invoked directly without using the &egi n_per| and

&end_per| constructs.

© 1997 Steve Golson Page 3

dc_per| : Enhancingdc_shel | using aPerl wrapper

Example: How to get the cell name when you have the pin name

Indc_shel | if you have apin name (fromtheal | _connect ed() command, for example) you might
want to get the corresponding cell name. This requires a simple regular expression substitution to strip off
the last hierarchical element of the pin name. However it is avkward and difficult to do thisindc_shel | .2

Hereisadc_per| script that generates alist of cell names from alist of pin names.

/* ...dc_shell conmands... */
/* the dc_shell variable is called mypins */

&begi n_perl;

these are perl conmands

@ist = &get_dc_shel | _vari abl e(" mypi ns");

strip off the trailing /... fromeach element in the |ist
grep { s?/[~]*$?? } @i st;

create the dc_shell variable

&set _dc_shel | _variabl e("nycells", @ist);

&end_perl ;

/* the dc_shell variable mycells has the list in it */
/* ...nore dc_shell commands... */

Alternatively this can al be defined as a Perl subroutine:

/* ...dc_shell commands... */
&begi n_perl;
sub getcells {
ny ($cellvar, $pinvar) = @;
ny @ist = &et _dc_shel | _vari abl e($pi nvar) ;
grep { s?/[~]*$?? } @i st;
&set _dc_shel | _variabl e($cellvar, @ist);
}
&end_perl ;
/[* ...more dc_shell commands... */

Now this subroutine can be invoked directly fromdc_shel | . Hereis how you might use thisinteractively:

dc_perl> list nylist

nylist = {"al/b/cde", "f/g/h/ijk", "I", "mn/op"}
1

dc_perl> &getcells("newist", "mylist");
dc_perl> list newi st

{"a/b", "f/g/h", "I", "mn"}

1

2. All right, if you really must know, here's an alias that will do it. The variable names are hard-coded. Yuck.
alias get_thecells " \
sh \" \
(echo -n \\\"thecells = \\\" \\\; \
echo \"thepins\") | \
sed -e "s?/[MMTINMITFLL31?,729° -e s/ 8/ > tp AL N
include tnp \; \
sh /binfrmtnp "

Page 4 © 1997 Steve Golson

dc_per| : Enhancingdc_shel | using aPerl wrapper

Example: Extracting the slack from atiming report

Analyzing timing reports is a common and sometimes tedious task. With dc_per | we can automatically
parse the timing report and extract values from it. For example, if the dlack is below a certain amount then
we might wish to do a further compile step on this module.

sub get_slack {

$_ = &get _dc_shell _cmd("report _timng");
nm slack\s+ # keyword sl ack

\ SH\ s+ # foll owed by one nore word
(\ S+) # then the val ue we want
/x || warn "got no match";

Hereisadc_per | subroutine which extracts the slack value from atiming report:

&set _dc_shel | _variabl e("dc_shel |l _status", $1);

}

R I I I R I R R R R I R I R I R

Report : timng
-path full
-del ay nax
-max_paths 1

Design : gf _mult

Version: v3.4b

Running r eport _ti m ng directly we get

Dat e : Fri Jan 17 09:22:11 1997

R I I I R I R R R R I R I R I R

Operating Conditions:

typi cal

Wre Loadi ng Mbdel Mode: top

Startpoint: in_b[O]

Endpoi nt: out[0] (output
Path Group: default

Pat h Type: max

Li brary:

(i nput port)

i nput external delay

in_b[0] (in)
UL56/ Y (NAND2X2)

U162/ Y (XOR2X1)
out[0] (out)
data arrival tinme

max_del ay
out put external del
data required tine

data required tine
data arrival tine

slack (MET)

© 1997 Steve Golson

ay

port)

access05_5v

Page 5

dc_per| : Enhancingdc_shel | using aPerl wrapper

Instead we caninvoke &get _sl ack whichwill runr eport _t i m ng for usand parse the output, leaving
thedack vaueindc_shel | _st at us:

dc_perl > &get sl ack();
4.930000

dc_perl> list dc_shell _status
dc_shel | _status = 4.930000
1

A simple modificationto get _sl ack would alow r eport _ti nmi ng arguments to be passed through.

Futurework

A sophisticated analysis of timing reportswould allow dc_per | to generate true timing budgets for a
hierarchical design, without the limitations of char act eri ze.

Complex automated synthesis techniques are made feasible with the powerful combination of Perl and
dc_shel | .

Availability

All dc_per | scripts can be retrieved via anonymous ftp from
ftp://ftp.ultranet.com pub/sgol son/dc_perl

This program is free software; you can redistribute it and/or modify it under the terms of either:

a) the GNU Genera Public License as published by the Free Software Foundation; either version 1, or
(at your option) any later version, or
b) the"Artistic License” which comeswiththedc_per| Kkit.

These are the same terms under which Perl itself is distributed.

Please contact the author if you have any comments or suggestions regarding dc_per | .

Page 6 © 1997 Steve Golson

	Abstract: Is there a command that you wish dc_shell had?
	The problem
	A solution
	Invoking dc_perl
	dc_perl commands
	Example: How to get the cell name when you have the pin name
	Example: Extracting the slack from a timing report
	Future work
	Availability

