
dc_perl: Enhancing dc_shell using a Perl wrapper
Steve Golson

Trilobyte Systems, 33 Sunset Road, Carlisle MA 01741
Phone: +1.508.369.9669

Fax: +1.508.371.9964
Email: sgolson@trilobyte.com
Abstract: Is there a command that you wish dc_shell had?

By using the Perl interpreter as a “wrapper” around dc_shell, powerful extensions to dc_shell
can be created. dc_shell commands can be generated by Perl, and the results analyzed by Perl in
real time (not post-processed). Further dc_shell commands can be algorithmically generated by
Perl based on the given results.

The user interface is just like dc_shell, but with user-defined extensions. This approach is
particularly suited for complex synthesis problems that currently require lots of post-processing or
tedious human analysis.

The problem
dc_shell provides a simple programming interface to Design Compiler (see Figure 1). However for many
complex synthesis tasks it has significant limitations, including:

• no subroutines

• no variable scoping

• limited arithmetic and logical operations

• primitive list processing

• inflexible extensibility (sh, execute)

• primitive pattern matching (regular expressions)

What we need is a simple, flexible, and above all powerful way to extend dc_shell. These extensions
should work both within scripts and interactively. All existing dc_shell scripts should work without
modification.

Design
Compiler

interactive input

output to screen or logfile

batch script input

Figure 1: normal dc_shell configuration
© 1997 Steve Golson Page 1

dc_perl: Enhancing dc_shell using a Perl wrapper
A solution
What we need is for dc_shell to be more like Perl! Perl, the Practical Extraction and Report Language1,
is (to quote the manpage) an interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It’s also a good language
for many system management tasks. Best of all, it’s freely available and freely redistributable.

A Perl program called dc_perl has been developed. It parses a stream of commands entered interactively
or via batch files, and determines which commands are Perl and which are dc_shell. The Perl commands
are evaluated directly, and the dc_shell commands are passed via pipes to an actual dc_shell process
running as a child under Perl. Output is controlled by the dc_perl wrapper, so dc_shell command
output can be filtered and processed before being printed to the main dc_perl logfile (see Figure 2).

dc_perl scripts can be thought of in several ways: as dc_shell scripts with a few “extensions”, or as
Perl scripts that occasionally call dc_shell, or anything in between.

1. Or depending on your level of experience, the Pathologically Eclectic Rubbish Lister.

Perl interpreter

pipe out

pipe in
Design

Compilerinteractive input

output to screen
or logfile

batch script input

dc_perl

Figure 2: dc_perl configuration
Page 2 © 1997 Steve Golson

dc_perl: Enhancing dc_shell using a Perl wrapper
Invoking dc_perl
dc_perl is invoked from your usual UNIX command prompt:

unix% dc_perl
dc_perl version 0.0
 DC Professional (TM)
 DC Expert (TM)
 HDL Compiler (TM)

 Version v3.4b -- Apr 01, 1996
 Copyright (c) 1988-1995 by Synopsys, Inc.
 ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys, I
and may be used and disclosed only as authorized in a license agreement
controlling such use and disclosure.

Initializing...
dc_perl>

This looks like a normal dc_shell session, except a dc_perl version number is displayed and the user
prompt is changed to dc_perl>.

The -f command-line switch can be used to specify a dc_perl batch script. All other dc_shell
command-line switches are passed through to the dc_shell process.

dc_perl commands
All dc_shell commands work normally. These keywords are used to switch into the Perl interpreter:

&begin_perl;
all lines between these two are evaluated by the perl interpreter
&end_perl;

The following Perl commands are predefined for interfacing with dc_shell:

&get_dc_shell_variable("variable");

Gets the value of a dc_shell variable. Returns a list or scalar depending on the type of
dc_shell variable.

&set_dc_shell_variable("variable", value);

Sets the value of the specified dc_shell variable. If value is a Perl list, then variable is
assigned as a dc_shell list.

&dc_shell_cmd("command");

Executes the given dc_shell command string. The output is printed to standard output.

&get_dc_shell_cmd("command");

Executes the given dc_shell command string, and returns the output instead of printing it. This
is used when you wish to filter or parse the output of the command.

Any non-comment line that has “&” as the first non-whitespace character, and ends with a “;” is assumed to
be a Perl function and is evaluated by the Perl interpreter (i.e. if it looks like Perl it is assumed to be Perl).
This allows user-defined Perl subroutines to be invoked directly without using the &begin_perl and
&end_perl constructs.
© 1997 Steve Golson Page 3

dc_perl: Enhancing dc_shell using a Perl wrapper
Example: How to get the cell name when you have the pin name
In dc_shell if you have a pin name (from the all_connected() command, for example) you might
want to get the corresponding cell name. This requires a simple regular expression substitution to strip off
the last hierarchical element of the pin name. However it is awkward and difficult to do this in dc_shell.2

Here is a dc_perl script that generates a list of cell names from a list of pin names.

/* ...dc_shell commands... */
/* the dc_shell variable is called mypins */

&begin_perl;
these are perl commands
@list = &get_dc_shell_variable("mypins");
strip off the trailing /... from each element in the list
grep { s?/[^/]*$?? } @list;
create the dc_shell variable
&set_dc_shell_variable("mycells", @list);
&end_perl;

/* the dc_shell variable mycells has the list in it */
/* ...more dc_shell commands... */

Alternatively this can all be defined as a Perl subroutine:

/* ...dc_shell commands... */
&begin_perl;
sub getcells {
 my ($cellvar, $pinvar) = @_;
 my @list = &get_dc_shell_variable($pinvar);
 grep { s?/[^/]*$?? } @list;
 &set_dc_shell_variable($cellvar, @list);
 }
&end_perl;
/* ...more dc_shell commands... */

Now this subroutine can be invoked directly from dc_shell. Here is how you might use this interactively:

dc_perl> list mylist
mylist = {"a/b/cde", "f/g/h/ijk", "l", "m/n/op"}
1

dc_perl> &getcells("newlist", "mylist");

dc_perl> list newlist
{"a/b", "f/g/h", "l", "m/n"}
1

2. All right, if you really must know, here’s an alias that will do it. The variable names are hard-coded. Yuck.
alias get_thecells " \
 sh \" \
 (echo -n \\\"thecells = \\\" \\\; \
 echo \"thepins\") | \
 sed -e 's?/[^,}/][^,}/]*[,}]?,?g' -e 's/,$/}/' > tmp \" \; \
 include tmp \; \
 sh /bin/rm tmp "
Page 4 © 1997 Steve Golson

dc_perl: Enhancing dc_shell using a Perl wrapper
Example: Extracting the slack from a timing report
Analyzing timing reports is a common and sometimes tedious task. With dc_perl we can automatically
parse the timing report and extract values from it. For example, if the slack is below a certain amount then
we might wish to do a further compile step on this module.

Here is a dc_perl subroutine which extracts the slack value from a timing report:

sub get_slack {
 $_ = &get_dc_shell_cmd("report_timing");
 m/ slack\s+ # keyword slack
 \S+\s+ # followed by one more word
 (\S+) # then the value we want
 /x || warn "got no match";
 &set_dc_shell_variable("dc_shell_status",$1);
 }

Running report_timing directly we get

**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : gf_mult
Version: v3.4b
Date : Fri Jan 17 09:22:11 1997
**

Operating Conditions: typical Library: access05_5v
Wire Loading Model Mode: top

 Startpoint: in_b[0] (input port)
 Endpoint: out[0] (output port)
 Path Group: default
 Path Type: max

 Point Incr Path

 input external delay 0.00 0.00 r
 in_b[0] (in) 0.00 0.00 r
 U156/Y (NAND2X2) 0.11 0.11 f
 …
 U162/Y (XOR2X1) 0.39 3.07 f
 out[0] (out) 0.00 3.07 f
 data arrival time 3.07

 max_delay 8.00 8.00
 output external delay 0.00 8.00
 data required time 8.00

 data required time 8.00
 data arrival time -3.07

 slack (MET) 4.93
© 1997 Steve Golson Page 5

dc_perl: Enhancing dc_shell using a Perl wrapper
Instead we can invoke &get_slack which will run report_timing for us and parse the output, leaving
the slack value in dc_shell_status:

dc_perl> &get_slack();
4.930000

dc_perl> list dc_shell_status
dc_shell_status = 4.930000
1

A simple modification to get_slack would allow report_timing arguments to be passed through.

Future work
A sophisticated analysis of timing reports would allow dc_perl to generate true timing budgets for a
hierarchical design, without the limitations of characterize.

Complex automated synthesis techniques are made feasible with the powerful combination of Perl and
dc_shell.

Availability
All dc_perl scripts can be retrieved via anonymous ftp from

ftp://ftp.ultranet.com/pub/sgolson/dc_perl

This program is free software; you can redistribute it and/or modify it under the terms of either:

a) the GNU General Public License as published by the Free Software Foundation; either version 1, or
(at your option) any later version, or

b) the “Artistic License” which comes with the dc_perl kit.

These are the same terms under which Perl itself is distributed.

Please contact the author if you have any comments or suggestions regarding dc_perl.
Page 6 © 1997 Steve Golson

	Abstract: Is there a command that you wish dc_shell had?
	The problem
	A solution
	Invoking dc_perl
	dc_perl commands
	Example: How to get the cell name when you have the pin name
	Example: Extracting the slack from a timing report
	Future work
	Availability

