
1

Flow Engineering for Physical
Implementation: Theory and Practice
Flow Engineering for Physical
Implementation: Theory and Practice

Steve GolsonSteve Golson

TrilobyteTrilobyte SystemsSystems

Pete ChurchillPete Churchill

Magma Design AutomationMagma Design Automation

June 10, 2008June 10, 2008

45th Design Automation Conference45th Design Automation Conference

2

Define: flowDefine: flow

flow flow n.n.

1.1. the act or manner of flowingthe act or manner of flowing

2.2. the smooth motion characteristic of fluidsthe smooth motion characteristic of fluids

3.3. anything that flows; stream or currentanything that flows; stream or current

4.4. a continuous productiona continuous production

5.5. the sequence in which operations are performed the sequence in which operations are performed

••from http://education.yahoo.comfrom http://education.yahoo.com

3

Define: audienceDefine: audience

�� design engineerdesign engineer

�� EDA vendorEDA vendor

�� managermanager

�� CADCAD

4

Define: flowDefine: flow

�� Management perspectiveManagement perspective
flow flow n.n.

a foura four--letter word often associated with work that canletter word often associated with work that can’’t be scheduled t be scheduled
and seems to never endand seems to never end

�� CAD perspectiveCAD perspective
flow flow n.n.

a foura four--letter word representing an endless project whose result is letter word representing an endless project whose result is
underappreciated and underused by the design communityunderappreciated and underused by the design community

�� Design engineer perspectiveDesign engineer perspective
flow flow n.n.

a foura four--letter word representing a necessary tool which you are not giveletter word representing a necessary tool which you are not given n
time to work on, even though what you have is not adequate or time to work on, even though what you have is not adequate or
completecomplete

�� EDA vendor perspectiveEDA vendor perspective
flow flow n.n.

a foura four--letter word representing all the stuff that customers do with otletter word representing all the stuff that customers do with other her
vendorvendor’’s tools, often making us look bads tools, often making us look bad

5

Flow (our definition) Flow (our definition)

flow flow n.n.

�� all the files and infrastructureall the files and infrastructure
required to implement a methodologyrequired to implement a methodology

““The CAD team has created a new flow The CAD team has created a new flow
for us to use on our next design.for us to use on our next design.””

�� a sequence of tool invocationsa sequence of tool invocations

““You need to run the flow for clock synthesis.You need to run the flow for clock synthesis.””

6

Define: physical implementationDefine: physical implementation

�� ““IC designIC design”” or or ““chip designchip design”” or or ““IC implementationIC implementation””

�� Everything from RTL Everything from RTL �� GDSIIGDSII

�� Everything Everything other thanother than functionalityfunctionality

�� NotNot writing RTL, writing RTL, notnot functional verificationfunctional verification

�� Hold function constant, change the representationHold function constant, change the representation

7

Define: engineeringDefine: engineering

engineering n.n.

� The application of scientific and mathematical principles
to practical ends such as the design, manufacture, and
operation of efficient and economical structures,
machines, processes, and systems.

••from http://education.yahoo.comfrom http://education.yahoo.com

8

The Principles of Flow EngineeringThe Principles of Flow Engineering

#1 Flows are hard#1 Flows are hard

#2 Flows are iterative#2 Flows are iterative

#3 Flows are automated#3 Flows are automated

#4 Flows fail more than they succeed#4 Flows fail more than they succeed

9

Principle #1: Flows are hardPrinciple #1: Flows are hard

Flows are expensiveFlows are expensive

�� We spend as much on flow We spend as much on flow
as we do on EDA tools themselvesas we do on EDA tools themselves

““The The IDMsIDMs and large and large fablessfabless companies are spending companies are spending
between $1 and $2 on CAD support activities for every dollar between $1 and $2 on CAD support activities for every dollar
they spend on the tools themselves. In fact, there are nearly they spend on the tools themselves. In fact, there are nearly
as many CAD engineers inside the semiconductor industry as as many CAD engineers inside the semiconductor industry as
there are in all of the EDA vendorsthere are in all of the EDA vendors…… combined!combined!””

Thomas Harms
Infineon Technologies

SCDsource
12 Dec 2007

10

Principle #1: Flows are hardPrinciple #1: Flows are hard

WeWe’’ve been designing chips for a long timeve been designing chips for a long time

Why hasnWhy hasn’’t this been solved already?t this been solved already?

�� EDA perspective:EDA perspective:

�� ThereThere’’s no money in its no money in it

�� Vendors can only work with their own toolsVendors can only work with their own tools

�� CAD perspective:CAD perspective:

�� Too many tools to support them allToo many tools to support them all

�� Too many process nodes/libraries to support them allToo many process nodes/libraries to support them all

�� Customization capabilities are difficult to includeCustomization capabilities are difficult to include

11

Principle #1: Flows are hardPrinciple #1: Flows are hard

““We build chips, not flowsWe build chips, not flows””

�� This is only true if you This is only true if you reusereuse a flowa flow

�� Flows are only reusableFlows are only reusable
when they are when they are designeddesigned to be reusedto be reused

�� Making changes and improvements to your flow Making changes and improvements to your flow
for reuse will for reuse will notnot make your current chip project make your current chip project
finish soonerfinish sooner……

however your however your nextnext chip will finish soonerchip will finish sooner……

�� but only if you actually reuse your flowbut only if you actually reuse your flow
and donand don’’t start over from scratch!t start over from scratch!

12

Principle #1: Flows are hardPrinciple #1: Flows are hard

Flow must change/adapt as the design maturesFlow must change/adapt as the design matures

�� Prototype flows needed in the beginningPrototype flows needed in the beginning

�� Production flows needed once implementation maturesProduction flows needed once implementation matures

�� Hopefully we are building the processHopefully we are building the process
while the RTL is still being writtenwhile the RTL is still being written

13

Principle #1: Flows are hardPrinciple #1: Flows are hard

�� EDA tools are complex and expensiveEDA tools are complex and expensive

�� Combining them into a flowCombining them into a flow
is is alsoalso complex and expensivecomplex and expensive

�� Always lots of time pressureAlways lots of time pressure
–– it seems there is never any time to develop what we needit seems there is never any time to develop what we need

–– instead, winstead, we have to make doe have to make do

14

Quote QuizQuote Quiz

““CanCan’’t we use the flow t we use the flow
from the last project?from the last project?””

““Nope, we just hacked Nope, we just hacked
something together something together
to get the chip out.to get the chip out.””

““You should just use our You should just use our
recommended flow.recommended flow.””

1. Management

2. CAD

3. EDA

4. Design

X

1. Management

2. CAD

3. EDA

4. Design

1. Management

2. CAD

3. EDA

4. Design

X

X

15

Principle #2: IterationPrinciple #2: Iteration

IterationIteration is an overloaded termis an overloaded term

We have two competing definitions:We have two competing definitions:

iteration iteration n.n.

�� handhand--fixing a single netlist or placement or routed block fixing a single netlist or placement or routed block
in order to meet your design goals (e.g., timing, DRC)in order to meet your design goals (e.g., timing, DRC)

These are These are micro iterationsmicro iterations

Goal: single iteration convergence using automated flowGoal: single iteration convergence using automated flow

iteration iteration n.n.

�� running your automated flow running your automated flow
when changes occur to RTL, floorplan, constraints, etc.when changes occur to RTL, floorplan, constraints, etc.

These are These are macro iterationsmacro iterations

Reality: many Reality: many manymany runsruns

16

Principle #2: IterationPrinciple #2: Iteration

Physical implementationPhysical implementation……

�� is is notnot like building a bridgelike building a bridge

because you only build a bridge oncebecause you only build a bridge once

Physical implementationPhysical implementation……

�� is like building a is like building a machinemachine that builds a bridgethat builds a bridge

Imagine building a new bridge Imagine building a new bridge every day!every day!

Our goal is to build a Our goal is to build a flowflow that builds a chip (RTLthat builds a chip (RTL��GDSII)GDSII)

17

Principle #2: IterationPrinciple #2: Iteration

�� Iterate early, iterate oftenIterate early, iterate often

�� Iterations will overlapIterations will overlap

�� How fast can you iterate?How fast can you iterate?

�� Each iteration must beEach iteration must be

–– repeatablerepeatable

–– reliablereliable

–– robustrobust

How can we accomplish this?How can we accomplish this?

18

Quote QuizQuote Quiz

““The RTL freeze The RTL freeze
was three weeks ago.was three weeks ago.””

““What about What about
the five changes since then?the five changes since then?””

““Those werenThose weren’’t releases, t releases,
they were they were ECOsECOs..””

1. Management

2. CAD

3. EDA

4. Design

X

1. Management

2. CAD

3. EDA

4. Design

1. Management

2. CAD

3. EDA

4. Design

X

X

19

Principle #3: AutomationPrinciple #3: Automation

Automation means your computer does the workAutomation means your computer does the work

�� Scripted, not GUIScripted, not GUI

�� No GUI implies no hand editsNo GUI implies no hand edits

�� Batch, not interactiveBatch, not interactive

�� SelfSelf--checking, not user judgmentchecking, not user judgment

�� Repeatable, reliable, robustRepeatable, reliable, robust

�� Predictable resultsPredictable results

Can I sleep while this is running?Can I sleep while this is running?

20

Principle #3: AutomationPrinciple #3: Automation

““Success in physical design Success in physical design
will come from relentless automation.will come from relentless automation.””

Paul RodmanPaul Rodman
DAC 2002DAC 2002

21

Quote QuizQuote Quiz

““WeWe’’ve got scripts ve got scripts
to automate your ECO flow. to automate your ECO flow.
The documentation is The documentation is
on our website.on our website.””

““146 pages of documentation. 146 pages of documentation.
How long will it take us How long will it take us
to learn this?to learn this?””

““I donI don’’t need an ECO flow. t need an ECO flow.
Get me a sixGet me a six--pack of Red Bull pack of Red Bull
and Iand I’’ll have it ready ll have it ready
in the morning.in the morning.””

1. Management

2. CAD

3. EDA

4. Design

X

1. Management

2. CAD

3. EDA

4. Design

1. Management

2. CAD

3. EDA

4. Design

X

X

22

Principle #4: FailurePrinciple #4: Failure

FailureFailure is an overloaded termis an overloaded term

We have two competing definitions:We have two competing definitions:

failure failure n.n.

�� when a particular flow (sequence of tool invocations) when a particular flow (sequence of tool invocations)
does not generate does not generate tapeouttapeout--quality resultsquality results

Reality: Reality: Most iterations Most iterations failfail for one reason or anotherfor one reason or another

Reality: Many Reality: Many manymany more failures than more failures than tapeoutstapeouts

failure failure n.n.

�� when a particular flow (all the scripts and infrastructure) when a particular flow (all the scripts and infrastructure)
is painfully awkward and difficult to useis painfully awkward and difficult to use

Reality: Many flows Reality: Many flows failfail although we rarely admit italthough we rarely admit it

23

Principle #4: Failure
(of scripts and infrastructure)
Principle #4: Failure
(of scripts and infrastructure)

Fallacy: Flows never failFallacy: Flows never fail

�� You always get the chip out the door, You always get the chip out the door,
so by definition your flow so by definition your flow ““worksworks””

�� The only flows that fail The only flows that fail
are the ones that are developed are the ones that are developed withoutwithout a chipa chip

Who develops flows without a chip project?Who develops flows without a chip project?

24

Principle #4: Failure
(of scripts and infrastructure)
Principle #4: Failure
(of scripts and infrastructure)

Dangerous fallacies:Dangerous fallacies:

�� Our flow is a successOur flow is a success

�� The CAD departmentThe CAD department’’s flow is a failures flow is a failure

�� The EDA vendorThe EDA vendor’’s flow is a failures flow is a failure

Outrageous truths:Outrageous truths:

�� Failure of your flow infrastructure is Failure of your flow infrastructure is badbad failurefailure

�� Acknowledge what is brokenAcknowledge what is broken

�� Consider what else might workConsider what else might work

25

Principle #4: Failure
(of sequence of tool invocations)
Principle #4: Failure
(of sequence of tool invocations)

�� This is This is goodgood failurefailure

�� Failure is inherent in the processFailure is inherent in the process

�� Failure is your friendFailure is your friend

26

Principle #4: FailurePrinciple #4: Failure

SuccessSuccess

�� How to define success?How to define success?

�� Must have something to measureMust have something to measure

�� Zero errors (DRC, timing, etc.)Zero errors (DRC, timing, etc.)

�� Success metrics will change as the design maturesSuccess metrics will change as the design matures

�� We should not expect We should not expect firstfirst pass successpass success

�� rather, we want rather, we want lastlast pass successpass success

�� eventually, eventually, everyevery pass successpass success

27

Quote QuizQuote Quiz

““Look at the cool wrapper we Look at the cool wrapper we
built around the tool. Now itbuilt around the tool. Now it’’s s
much easier for you to use.much easier for you to use.””

““I got a segmentation fault. I got a segmentation fault.
What do I do now?What do I do now?””

““Can you provide a test case? Can you provide a test case?
Without your wrapper?Without your wrapper?””

1. Management

2. CAD

3. EDA

4. Design

X

1. Management

2. CAD

3. EDA

4. Design

1. Management

2. CAD

3. EDA

4. Design

X

X

28

Principle #4: FailurePrinciple #4: Failure

�� All tools suckAll tools suck

29

GoalsGoals

Building from the 4 principles:Building from the 4 principles:

�� What are the What are the goalsgoals for our flow? for our flow?

�� How should it look and work?How should it look and work?

�� Goals are used to drive decisions Goals are used to drive decisions
during flow development during flow development
and ongoing maintenanceand ongoing maintenance

30

Quote QuizQuote Quiz

““Our goal Our goal
is to show you the best way is to show you the best way
to use our tools.to use our tools.””

““Our goal Our goal
is to build flows, not chips.is to build flows, not chips.””

““Our goal Our goal
is to meet the original schedule.is to meet the original schedule.””

““Our goal Our goal
is to build chips, not flows.is to build chips, not flows.””

EDAEDA

DesignDesign

ManagementManagement

CADCAD

31

The Goals of Flow DevelopmentThe Goals of Flow Development

#1 Design independent flow#1 Design independent flow

#2 Tool independent flow#2 Tool independent flow

#3 Technology independent flow#3 Technology independent flow

#4 User independent flow#4 User independent flow

32

Principle: iteration
Goal: user independence
Principle: iteration
Goal: user independence

�� implies isolated sandbox (aka workspace)implies isolated sandbox (aka workspace)

�� all inputs, all inputs, libslibs, etc., etc.

�� no external sourcesno external sources

�� no common files (except: EDA tools, OS)no common files (except: EDA tools, OS)

�� no rug to get pulled outno rug to get pulled out

�� isolation for each iteration (multiple sandboxes)isolation for each iteration (multiple sandboxes)

33

IterationIteration

�� can you exactly repeat what you did before?can you exactly repeat what you did before?

–– if you canif you can’’t repeat it, then you are not iterating, t repeat it, then you are not iterating,
you are flailingyou are flailing

�� if your result is a failure, you want to make sure if your result is a failure, you want to make sure
you donyou don’’t do it that way againt do it that way again

�� if your result is a success you want to repeat itif your result is a success you want to repeat it

�� what files went into your successful run? what files went into your successful run?
this requiresthis requires……

34

Configuration managementConfiguration management

�� Configuration management means whichConfiguration management means which……

�� RTL?RTL?

�� scripts?scripts?

�� libraries?libraries?

�� EDA tool versions?EDA tool versions?

�� ……means any user should be able to repeatmeans any user should be able to repeat

�� same user rerunsame user rerun

�� different user rerundifferent user rerun

�� rerun next yearrerun next year

�� EDA vendor rerun (e.g., test case)EDA vendor rerun (e.g., test case)

�� ……implies revision controlimplies revision control

35

Revision controlRevision control

�� all sorts of these have been used for IC designall sorts of these have been used for IC design

–– copy directory structurecopy directory structure

–– SCCSSCCS

–– RCSRCS

–– CVSCVS

–– SubversionSubversion

–– Synchronicity, Synchronicity, ClearcaseClearcase, , AccuRevAccuRev, ,
ICManageICManage, , ClioSoftClioSoft, etc., etc.

36

Revision controlRevision control

�� What files need to be under revision control?What files need to be under revision control?

�� SSome that you might not immediately consider:ome that you might not immediately consider:

–– librarieslibraries

–– derived files: netlist, layoutderived files: netlist, layout

–– anything that the next step in the flow might needanything that the next step in the flow might need

–– anything that you might modify for an ECOanything that you might modify for an ECO

37

Revision control needs to handle:Revision control needs to handle:

�� large binary fileslarge binary files

�� directories as primary objectsdirectories as primary objects

�� symbolic links as primary objectssymbolic links as primary objects

�� CVS doesnCVS doesn’’t cut itt cut it……

38

Revision Tags Revision Tags

�� Configuration management uses Configuration management uses
revision tagsrevision tags or equivalentor equivalent

�� Must uniquely identify each iterationMust uniquely identify each iteration

�� Bad names:Bad names:

–– LatestLatest

–– Bronze, silver, goldBronze, silver, gold

�� Good names:Good names:

–– Anything that will never run outAnything that will never run out

–– IntegersIntegers

–– DatesDates

�� but be sure and include the yearbut be sure and include the year

�� and allow for multiple names per dayand allow for multiple names per day

39

Iteration + user independenceIteration + user independence

Consider the userConsider the user’’s s shell environmentshell environment::

�� It should It should notnot affect your flow,affect your flow,
because it isnbecause it isn’’t under revision control!t under revision control!

�� Tool version selection should Tool version selection should notnot be determined be determined
by your shell search pathby your shell search path

40

Automation + tool independenceAutomation + tool independence

�� The flow should work with different tools The flow should work with different tools
and any number of copies of the tools you haveand any number of copies of the tools you have

�� There is one precious resource There is one precious resource
that you that you mustmust manage in an automated fashionmanage in an automated fashion……

Licenses!Licenses!

41

License managementLicense management

�� Job should Job should nevernever fail due to lack of licensefail due to lack of license

�� Implies job Implies job queueingqueueing system (LSF, SGE)system (LSF, SGE)

�� even if you have only one license!even if you have only one license!

�� even if you have only one execution host!even if you have only one execution host!

�� even if you have only one user!even if you have only one user!

�� Your job control system Your job control system mustmust be licensebe license--awareaware

�� Each command within a tool Each command within a tool
may require a different set of licensesmay require a different set of licenses

�� Far easier to be efficient with licenses Far easier to be efficient with licenses
if the tool invocations are if the tool invocations are shortshort and and focusedfocused

42

Define: targetDefine: target

target target n.n.

An invocation of a toolAn invocation of a tool

modular target modular target n.n.

An invocation of a tool An invocation of a tool
to perform a single focused taskto perform a single focused task

43

Why modular targets are a good ideaWhy modular targets are a good idea

�� simple to specify/understand/write/reusesimple to specify/understand/write/reuse

�� more efficient license use (check in/out)more efficient license use (check in/out)

�� more efficient host usemore efficient host use

�� different steps have different resource requirements different steps have different resource requirements
(e.g., memory, threading)(e.g., memory, threading)

�� enables parallelism: execute targets in parallelenables parallelism: execute targets in parallel

�� faster results (critical target first)faster results (critical target first)

�� ease of modificationease of modification

�� selfself--checking targets can detect a problem earlier in the flowchecking targets can detect a problem earlier in the flow

�� noncritical target can fail and rest can completenoncritical target can fail and rest can complete

44

Example modular targetsExample modular targets

�� dc_read_sdcdc_read_sdc

1.1. read read ddcddc databasedatabase

2.2. read SDCread SDC

3.3. write write ddcddc databasedatabase

�� dc_compiledc_compile

1.1. read read ddcddc databasedatabase

2.2. compilecompile

3.3. write write ddcddc databasedatabase

�� dc_write_verilogdc_write_verilog

1.1. read read ddcddc databasedatabase

2.2. write out netlistwrite out netlist

�� pt_analysis_using_sdcpt_analysis_using_sdc

1.1. read read netlistnetlist

2.2. read read parasiticsparasitics (optional)(optional)

3.3. read SDCread SDC

4.4. update timingupdate timing

5.5. save sessionsave session

�� talus_fix_timetalus_fix_time

1.1. read constrained volcanoread constrained volcano

2.2. fix timefix time

3.3. write optimized volcanowrite optimized volcano

�� talus_fix_celltalus_fix_cell

1.1. read floorplan volcanoread floorplan volcano

2.2. fix cellfix cell

3.3. write placed volcanowrite placed volcano

45

Sequence managementSequence management

�� GNU makeGNU make

–– Understands and manages dependenciesUnderstands and manages dependencies

–– Supports parallel executionSupports parallel execution

–– Free, and available on all the tool platformsFree, and available on all the tool platforms

46

flowfile: a make-based target sequenceflowfile: a make-based target sequence

dc_load_design_i1: dc_load_design_i1:

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

DC_TOPO="1" DC_TOPO="1" \\

dc_load_designdc_load_design

@$(end@$(end--target)target)

dc_load_constraints_i1: dc_load_design_i1dc_load_constraints_i1: dc_load_design_i1

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="$(DERIVED_DIR)/dc_load_design_i1/$(BLOCK_NAME).ddc" ="$(DERIVED_DIR)/dc_load_design_i1/$(BLOCK_NAME).ddc" \\

constraints_fileconstraints_file="="flowfiles/cpu_constraints.tclflowfiles/cpu_constraints.tcl" " \\

DC_TOPO="0" DC_TOPO="0" \\

dc_load_constraintsdc_load_constraints

@$(end@$(end--target)target)

dc_compile_i1: dc_load_constraints_i1dc_compile_i1: dc_load_constraints_i1

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="$(DERIVED_DIR)/dc_load_constraints_i1/$(BLOCK_NAME).ddc" ="$(DERIVED_DIR)/dc_load_constraints_i1/$(BLOCK_NAME).ddc" \\

DC_TOPO="0" DC_TOPO="0" \\

dc_compiledc_compile

@$(end@$(end--target)target)

dc_syn_reports_i2: dc_compile_i1dc_syn_reports_i2: dc_compile_i1

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="" ="" \\

DC_TOPO="0" DC_TOPO="0" \\

dc_syn_reportsdc_syn_reports

@$(end@$(end--target)target)

dc_compile_incremental_i1: dc_syn_reports_i2dc_compile_incremental_i1: dc_syn_reports_i2

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="$(DERIVED_DIR)/dc_compile_i1/$(BLOCK_NAME).ddc" ="$(DERIVED_DIR)/dc_compile_i1/$(BLOCK_NAME).ddc" \\

DC_TOPO="0" DC_TOPO="0" \\

dc_compile_incrementaldc_compile_incremental

@$(end@$(end--target)target)

dc_verilog_out_i1: dc_compile_incremental_i1dc_verilog_out_i1: dc_compile_incremental_i1

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="$(DERIVED_DIR)/dc_compile_incremental_i1/$(BLOCK_NAME).ddc" ="$(DERIVED_DIR)/dc_compile_incremental_i1/$(BLOCK_NAME).ddc" \\

TOOL_VERSION="BTOOL_VERSION="B--2008.062008.06--SP2" SP2" \\

DC_TOPO="0" DC_TOPO="0" \\

dc_verilog_outdc_verilog_out

@$(end@$(end--target)target)

post_compile_reportspost_compile_reports: dc_compile_incremental_i1: dc_compile_incremental_i1

@$(start@$(start--target)target)

@$(MAKE) @$(MAKE) ----nono--printprint--directory directory \\

MAKEFILES=../../flow/MAKEFILES=../../flow/design_compiler/design_compiler_master.mkdesign_compiler/design_compiler_master.mk \\

TARGET_DIR=$(TARGET_DIR) TARGET_DIR=$(TARGET_DIR) \\

TARGET_INSTANCE=$(TARGET_INSTANCE) TARGET_INSTANCE=$(TARGET_INSTANCE) \\

input_ddcinput_ddc="$(DERIVED_DIR)/dc_compile_incremental_i1/$(BLOCK_NAME).ddc" ="$(DERIVED_DIR)/dc_compile_incremental_i1/$(BLOCK_NAME).ddc" \\

DC_TOPO="0" DC_TOPO="0" \\

dc_syn_reportsdc_syn_reports

@$(end@$(end--target)target)

complete: parallel_2complete: parallel_2

47

How would you create and maintain
these sequences?
How would you create and maintain
these sequences?

�� A A flowfileflowfile is a is a makefilemakefile that describes your flow that describes your flow
(a sequence of tool invocations, i.e., targets)(a sequence of tool invocations, i.e., targets)

�� flowMakerflowMaker

–– Tcl/TkTcl/Tk script written to build and maintain script written to build and maintain flowfilesflowfiles

–– Only thing we couldnOnly thing we couldn’’t get off the shelft get off the shelf

–– Runs on all tool platforms (e.g., RHEL)Runs on all tool platforms (e.g., RHEL)

–– Download a copy at Download a copy at www.flowMaker.infowww.flowMaker.info

48

flowMaker windowflowMaker window

49

Select a master targetSelect a master target

50

Activate the master targetActivate the master target

51

Added new target instanceAdded new target instance

52

New target instanceNew target instance

53

Target menuTarget menu

54

Rename the target instanceRename the target instance

55

Target instance renamedTarget instance renamed

56

Option SelectorOption Selector

57

Derived file forwardingDerived file forwarding

58

Derived file selectedDerived file selected

59

Job Submission SettingsJob Submission Settings

60

Change tool version for a targetChange tool version for a target

61

Target menuTarget menu

62

Parallel targetsParallel targets

63

Add another targetAdd another target

64

Rearrange target orderRearrange target order

65

Update target optionsUpdate target options

66

Add duplicate targetAdd duplicate target

67

Save flowfileSave flowfile

68

How to run a flowHow to run a flow

% make FLOW=dc completecomplete

% make FLOW=dc complete -j -k >& make.log &

69

Anatomy of a flowMaker master targetAnatomy of a flowMaker master target

dc_syn_reports:

Basic post-synthesis Design Compiler reports

#

in input_ddc

input_ddc(type) = ddc_file

input_ddc(comment) = Input design database in DDC format

#

job DC_TOPO

DC_TOPO(type) = boolean

DC_TOPO(value) = 0

DC_TOPO(comment) = Enable DC topographical mode

#

$(call dispatch, dc_shell \

$(if $(findstring $(DC_TOPO),1),-topographical) \

-f $(FLOW_ROOT)/design_compiler/dc_syn_reports.tcl \

,$(TARGET_DIR)/$(TARGET_INSTANCE).log)

70

Anatomy of a flowMaker master targetAnatomy of a flowMaker master target

talus_fix_timetalus_fix_time::

Reads in volcano, runs fix time ## Reads in volcano, runs fix time

##

in # in input_volcanoinput_volcano

input_volcano(typeinput_volcano(type) = volcano) = volcano

input_volcano(commentinput_volcano(comment) = Input design database in volcano format) = Input design database in volcano format

varvar target_slacktarget_slack

target_slack(typetarget_slack(type) = string) = string

target_slack(valuetarget_slack(value) = 0p) = 0p

target_slack(commenttarget_slack(comment) = Target slack with time unit) = Target slack with time unit

varvar timing_efforttiming_effort

timing_effort(typetiming_effort(type) = menu) = menu

timing_effort(valuetiming_effort(value) = medium) = medium

timing_effort(allowedvaluestiming_effort(allowedvalues) = low medium high) = low medium high

timing_effort(commenttiming_effort(comment) = timing effort option to fix time) = timing effort option to fix time

out VOLCANO# out VOLCANO

VOLCANO(typeVOLCANO(type) = volcano) = volcano

VOLCANO(filenameVOLCANO(filename) = $() = $(BLOCK)%fixBLOCK)%fix--time.volcanotime.volcano

VOLCANO(commentVOLCANO(comment) = Output design database in volcano format) = Output design database in volcano format

##

$(call dispatch, $(call dispatch, \\

talus talus --f $(FLOW_ROOT)/magma/$@.f $(FLOW_ROOT)/magma/$@.tcltcl --logdirlogdir $(TARGET_DIR) $(TARGET_DIR) \\

, $(TARGET_DIR)/$(, $(TARGET_DIR)/$(TARGET_INSTANCE).logTARGET_INSTANCE).log))

71

Master target optionsMaster target options

72

Different flowMaker usersDifferent flowMaker users

�� Just runs an existing Just runs an existing flowfileflowfile. .
Invokes Invokes ““makemake”” from the command line.from the command line.

�� Uses Uses flowMakerflowMaker to edit the target options, to edit the target options,
then runs the modified then runs the modified flowfileflowfile..

�� Uses Uses flowMakerflowMaker to edit the target options, to edit the target options,
edit the target sequence (add, delete, rearrange targets), edit the target sequence (add, delete, rearrange targets),
then runs the modified then runs the modified flowfileflowfile..

�� Writes new master targets Writes new master targets
to support new EDA tools and new features.to support new EDA tools and new features.

73

Things to considerThings to consider

�� What sort of directory structure do you have?What sort of directory structure do you have?

�� What sort of revision control?What sort of revision control?

�� What sort of configuration management and tags?What sort of configuration management and tags?

�� How do you manage job control?How do you manage job control?

�� How do you manage licenses?How do you manage licenses?

�� How do you manage tool versions?How do you manage tool versions?

�� How do you manage your project?How do you manage your project?

74

Notes on project managementNotes on project management

What you do What you do notnot need: MS Projectneed: MS Project

�� IC design is an iterative process, IC design is an iterative process,
particularly if your flow is not stableparticularly if your flow is not stable
�� Flows will never be stable Flows will never be stable
when used on an immature designwhen used on an immature design

�� PERT charts are linear toolsPERT charts are linear tools

�� OK to have major milestones OK to have major milestones
but minor milestones are too detailedbut minor milestones are too detailed

�� DonDon’’t be afraid of another iterationt be afraid of another iteration
�� with automation, rerun is easywith automation, rerun is easy

75

A suggested management methodA suggested management method

�� Make a list of everything you havenMake a list of everything you haven’’t done yet t done yet
for your design (past successes donfor your design (past successes don’’t count)t count)

�� Make a second list of everything Make a second list of everything
not automated in your flow yetnot automated in your flow yet

�� Schedule each item from both lists Schedule each item from both lists
to occur concurrent with maturation of the RTLto occur concurrent with maturation of the RTL

�� How long will the implementation take?How long will the implementation take?
�� You mean to run through the tools the final time, You mean to run through the tools the final time,

or to get all the items in the list achieved?or to get all the items in the list achieved?

�� You wonYou won’’t know the run time until both lists are emptyt know the run time until both lists are empty

�� Hopefully both lists will be empty before the RTL stops changingHopefully both lists will be empty before the RTL stops changing

�� Increase frequency of RTL releases as project maturesIncrease frequency of RTL releases as project matures
�� You need time between releases early on to work on the two listsYou need time between releases early on to work on the two lists

�� Towards the end, you need to iterate Towards the end, you need to iterate
to make sure you are capable of running it all throughto make sure you are capable of running it all through

76

Managing iterationsManaging iterations

�� Iterate early, iterate oftenIterate early, iterate often

�� The last change in the RTL will be smallThe last change in the RTL will be small

�� A big change in the RTL wonA big change in the RTL won’’t be the last changet be the last change

�� How do you tell if you are done?How do you tell if you are done?

�� How do you measure progress?How do you measure progress?

�� Consider your process from RTLConsider your process from RTL��GDSII:GDSII:

�� Do you know the theoretical minimum time?Do you know the theoretical minimum time?

�� Do you know exactly how many steps are required?Do you know exactly how many steps are required?

77

Simple progress reportSimple progress report

min_delaymin_delay

31Mar1019 30Mar0609 28Mar2229 27M31Mar1019 30Mar0609 28Mar2229 27Mar1956 27Mar0000 25Mar1953ar1956 27Mar0000 25Mar1953

post_routepost_route SLOW 2328 2471 1703 2146 1318 137SLOW 2328 2471 1703 2146 1318 13766

TYP TYP 5412 57885412 5788

FAST 4933 4923 81732 FAST 4933 4923 81732 71500 62504 6001471500 62504 60014

DFT.scan_setupDFT.scan_setup SLOW 212 209 SLOW 212 209 209209 1573 1602 16461573 1602 1646

TYP TYP 1652 16651652 1665

FAST 538 535 FAST 538 535 535535 1592 1666 16711592 1666 1671

DFT.scan_shiftDFT.scan_shift SLOW 14 SLOW 14 1414 27 15 27 15 1515 1515

TYP TYP 23 2523 25

FAST 54 44 49 FAST 54 44 49 21 42 4321 42 43

DFT.stuckDFT.stuck--at_scan_captureat_scan_capture SLOW 203 152 171 433 125 17SLOW 203 152 171 433 125 1788

TYP TYP 166 241166 241

FAST 751 517 FAST 751 517 933 292 349933 292 349

DFT.AC_scan_captureDFT.AC_scan_capture SLOW 405 354 1730 1423 147SLOW 405 354 1730 1423 14766

TYP TYP 1458 15311458 1531

FAST 1214 992 FAST 1214 992 2219 1552 16092219 1552 1609

DFT.boundary_scanDFT.boundary_scan SLOW 44 51 1607 1651 169SLOW 44 51 1607 1651 16966

TYP TYP 1856 18811856 1881

FAST 370 431 FAST 370 431 1843 1921 19261843 1921 1926

DFT.dft_p1500 SLOW 200 3868 DFT.dft_p1500 SLOW 200 3868 7711 7711 77117711 77117711

TYP TYP 7711 7711 77117711

FAST 526 3868 FAST 526 3868 7711 7711 77117711 77117711

DFT.sms_p1500 SLOW 200 659 DFT.sms_p1500 SLOW 200 659 6785 7067 71846785 7067 7184

TYP TYP 7253 72717253 7271

FAST 526 904 FAST 526 904 7224 7280 72817224 7280 7281

total 12518 19992 84426 total 12518 19992 84426 115043 129411 127999115043 129411 127999

78

The Magic 8-Ball as a management toolThe Magic 8-Ball as a management tool

““Will there be problems with my new IP?Will there be problems with my new IP?””

““Is two weeks enough time to complete a floorplan?Is two weeks enough time to complete a floorplan?””

““Will we really see new timing problems if we turn on SI?Will we really see new timing problems if we turn on SI?””

““Will this chip go out on time?Will this chip go out on time?””

YOU MAY
RELY ON IT

DON’T
COUNT
ON IT

IT IS
CERTAIN
BETTER NOT

TELL YOU NOW

79

ChecklistChecklist

LetLet’’s make up a checklist for physical implementation!s make up a checklist for physical implementation!

�� Something like the Reuse Methodology ManualSomething like the Reuse Methodology Manual
and Verification Methodology Manualand Verification Methodology Manual

�� All the things you need:All the things you need:

�� SoftwareSoftware

�� HardwareHardware

�� Other stuffOther stuff

80

What you need: Other stuffWhat you need: Other stuff

�� Books: Books: TclTcl, , perlperl, make, shell, UNIX, revision control, make, shell, UNIX, revision control

�� TrainingTraining

�� Tool documentationTool documentation

�� Design documentationDesign documentation

81

What you need:
Hardware and Infrastructure
What you need:
Hardware and Infrastructure

�� CPU CPU ---- compute farm (how many?)compute farm (how many?)

�� memory (how much?)memory (how much?)

�� disk (1Mbyte per disk (1Mbyte per placeableplaceable instance?)instance?)

�� backups, printers, power, maintenancebackups, printers, power, maintenance……

�� desktop: usually PC so you can have office apps (email, Word)desktop: usually PC so you can have office apps (email, Word)

�� VNC or other connection to CPUVNC or other connection to CPU
how easily can you transfer files to/from desktop to CPU?how easily can you transfer files to/from desktop to CPU?
how easily can you cuthow easily can you cut--andand--paste?paste?

�� remote access: VPNremote access: VPN

�� bug trackingbug tracking

�� team communication (email, conferences, video links)team communication (email, conferences, video links)

82

What you need: SoftwareWhat you need: Software

�� configuration management: revision controlconfiguration management: revision control

�� license management: job controllicense management: job control

�� flow management: flow management: flowMakerflowMaker

�� dependence management: makedependence management: make

�� tool version management: job controltool version management: job control

�� compute farm management: job controlcompute farm management: job control

�� error management: error management: logscanlogscan + self+ self--checkingchecking

�� physical design toolsphysical design tools

�� libraries (standard cell, IO, memory, analog, 3libraries (standard cell, IO, memory, analog, 3rdrd party IP)party IP)

83

Quote QuizQuote Quiz

““I still donI still don’’t see why we cant see why we can’’t t
use the flow from the last chip.use the flow from the last chip.””

““How about a flow from the How about a flow from the
EDA vendor? CanEDA vendor? Can’’t we start t we start
with what they offer?with what they offer?””

““DidnDidn’’t the guys in Bangalore t the guys in Bangalore
just tape out? We can take their just tape out? We can take their
flow, right?flow, right?””

1. Management

2. CAD

3. EDA

4. Design

X

1. Management

2. CAD

3. EDA

4. Design

1. Management

2. CAD

3. EDA

4. Design

X

X

84

ThanksThanks

�� These companies loaned software keys to build up These companies loaned software keys to build up
the example flow:the example flow:

–– MagmaMagma

–– SynopsysSynopsys

–– CadenceCadence

–– CLK Design AutomationCLK Design Automation

�� Designs and libraries provided by:Designs and libraries provided by:

–– Sun MicrosystemsSun Microsystems

–– Artisan/ARMArtisan/ARM

–– NangateNangate

�� Special thanks to Special thanks to
NarendraNarendra ShenoyShenoy, Leon , Leon StokStok and David and David RedaReda

85

Flow engineering:
Things to remember
Flow engineering:
Things to remember

�� PrinciplesPrinciples

#1 Flows are hard#1 Flows are hard

#2 Iterate#2 Iterate

#3 Automate#3 Automate

#4 Failure is your friend#4 Failure is your friend

�� GoalsGoals

#1 Design independent flow#1 Design independent flow

#2 Tool independent flow #2 Tool independent flow

#3 Technology independent flow#3 Technology independent flow

#4 User independent flow#4 User independent flow

