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Physical implementation

Rule #1
Do not change the functionality

Rule #2
Meet the specified timing constraints
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Physical Implementation Tools

automatic test pattern generation (ATPG)

cell placement

clock tree synthesis (CTS)

design-for-manufacturing/design-for-yield (DFM/DFY) tools

detail router

floorplanning
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Physical Implementation Tools

gate-level power analysis

global router

RTL power analysis

scan insertion

static timing analysis

synthesis from RTL to gate-level netlist

voltage drop analysis
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Timing-driven
Physical Implementation Tools

Q: What do all these timing-driven tools have in common?

A: They require correct and complete timing constraints

Correct: constraints agree with the chip spec

Complete: all paths are constrained
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What’s the big deal?

Just write

“the SDC file”

and use it for every tool
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Why tools require different files

• File formats

• Versions

• Netlist status

• Features
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Flow
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Problems

Problem #1
How to manage this multiplicity of files

Problem #2
How to ensure consistency across tools
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Consistency

Timing-driven tools have

consistent timing constraints

if, given the same netlist,

they identify the same critical path

for a given path group.
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Consistency

1. For tool A, for each path group,
report the critical path.

2. In tool B, report the identical path
(startpoint, endpoint, through points, clocks).

3. Tool B path must report same constraints
(e.g., launch clock time, capture clock time,
clock latencies, input/output delay).

4. Tool B must report the same slack.
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Consistency

1. For tool A, for each path group,
report the critical path.

2. In tool B, report the identical path
(startpoint, endpoint, through points, clocks).

3. Tool B path must report same constraints
(e.g., launch clock time, capture clock time,
clock latencies, input/output delay).

4. Tool B must report the same slack,
within some reasonable margin.
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Solution #2:
Use PrimeTime throughout the flow

Switches to add to “signoff” PrimeTime scripts:

• High-fanout nets? (yes or no)

• Back-annotated parasitics? (yes or no)

• Propagate clocks? (yes or no)

• Crosstalk analysis? (yes or no)

• Netlist status (for example, scan inserted or not)
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Flow
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Solution #1:
Use PrimeTime to generateall needed files

• write_sdc

• write_sdc  and post-process the SDC (Perl script)

• custom PrimeTime Tcl to generate needed files
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Flow
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Flow
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Flow
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Problem: SDC command interpretation

SDC specification defines syntax, not behavior

If the SDC says
set_multicycle_path 2 -from [get_clocks clkA]

set_multicycle_path 3 -from [get_clocks clkA]  \
                      -to   [get_clocks clkB]

set_multicycle_path 4 -to   [get_clocks clkB]

What is the multicycle value for a path from clkA to clkB?
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Problem: Hierarchy and budgeting

• Maintain consistent constraints across hierarchy

• Block-level constraints
must be automatically generated
from full-chip constraints

• Min delays (hold) are as important as max delays

• Use default budgets, or simple slack allocation

• Accurate clock latencies are critical

• This is really hard
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Problem: Hierarchy and promotion

• Block-level constraints must be promoted to full-chip
example: IP block with supplied block-level path exceptions

• Must automate this process

• “Identical” blocks may have different constraints
example: multiple copies of CPU, or IO interface
perhaps different modes, with different path exceptions
perhaps operating at different voltages
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Example: extract clock latencies

Given a netlist with propagated clocks,
how to describe the equivalent ideal clock timing?

What we want is a Tcl file that looks like this:
########## cpuA_clk
set clock_source_latency(cpuA_clk:SLOW:early:rise) 1.987
set clock_source_latency(cpuA_clk:SLOW:late:rise)  2.305
set clock_source_latency(cpuA_clk:SLOW:early:fall) 1.959
set clock_source_latency(cpuA_clk:SLOW:late:fall)  2.272
set clock_network_latency(cpuA_clk:SLOW:early:rise) 1.228
set clock_network_latency(cpuA_clk:SLOW:late:rise)  1.405
set clock_network_latency(cpuA_clk:SLOW:early:fall) 1.257
set clock_network_latency(cpuA_clk:SLOW:late:fall)  1.438
set clock_global_skew(cpuA_clk:SLOW)  0.187

Then source this into Design Compiler, PrimeTime…
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PrimeTime Tcl script
to extract clock latencies

foreach clock that is propagated and has a defined source
get source latency attributes
print source latency values
foreach register using this clock

find the max delay critical path to this capture register
get capture clock latency => total early latency
network early latency = total early – source

find the min delay critical path to this capture register
get the capture clock latency => total late latency
network late latency = total late – source

simple statistics on all network latency values
print network latency values
print global skew
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Summary

Our goals:

• A methodology/flow which is
automated
flexible
consistent

• Repeatable, reliable results from our tools

• Manually edit and maintain constraints in one place:
full-chip PrimeTime Tcl scripts

• Methodology which is not design-specific
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Thank you

• Mark Sprague, AMD

• Jerry Frenkil, Sequence Design

• Many previous clients for examples, good and bad…
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Questions?


