
TRILOBYTE

SYSTEMS

Consistent Timing Constraints with PrimeTime

Steve Golson
Trilobyte Systems

http://www.trilobyte.com

2

Physical implementation

Rule #1
Do not change the functionality

Rule #2
Meet the specified timing constraints

3

Physical Implementation Tools

automatic test pattern generation (ATPG)

cell placement

clock tree synthesis (CTS)

design-for-manufacturing/design-for-yield (DFM/DFY) tools

detail router

floorplanning

4

Physical Implementation Tools

gate-level power analysis

global router

RTL power analysis

scan insertion

static timing analysis

synthesis from RTL to gate-level netlist

voltage drop analysis

5

Timing-driven
Physical Implementation Tools

Q: What do all these timing-driven tools have in common?

A: They require correct and complete timing constraints

Correct: constraints agree with the chip spec

Complete: all paths are constrained

6

What’s the big deal?

Just write

“the SDC file”

and use it for every tool

7

Why tools require different files

• File formats

• Versions

• Netlist status

• Features

8

Flow

9

Problems

Problem #1
How to manage this multiplicity of files

Problem #2
How to ensure consistency across tools

10

Consistency

Timing-driven tools have

consistent timing constraints

if, given the same netlist,

they identify the same critical path

for a given path group.

11

Consistency

1. For tool A, for each path group,
report the critical path.

2. In tool B, report the identical path
(startpoint, endpoint, through points, clocks).

3. Tool B path must report same constraints
(e.g., launch clock time, capture clock time,
clock latencies, input/output delay).

4. Tool B must report the same slack.

12

Consistency

1. For tool A, for each path group,
report the critical path.

2. In tool B, report the identical path
(startpoint, endpoint, through points, clocks).

3. Tool B path must report same constraints
(e.g., launch clock time, capture clock time,
clock latencies, input/output delay).

4. Tool B must report the same slack,
within some reasonable margin.

13

Solution #2:
Use PrimeTime throughout the flow

Switches to add to “signoff” PrimeTime scripts:

• High-fanout nets? (yes or no)

• Back-annotated parasitics? (yes or no)

• Propagate clocks? (yes or no)

• Crosstalk analysis? (yes or no)

• Netlist status (for example, scan inserted or not)

14

Flow

15

Solution #1:
Use PrimeTime to generateall needed files

• write_sdc

• write_sdc and post-process the SDC (Perl script)

• custom PrimeTime Tcl to generate needed files

16

Flow

17

Flow

18

Flow

19

Problem: SDC command interpretation

SDC specification defines syntax, not behavior

If the SDC says
set_multicycle_path 2 -from [get_clocks clkA]

set_multicycle_path 3 -from [get_clocks clkA] \
 -to [get_clocks clkB]

set_multicycle_path 4 -to [get_clocks clkB]

What is the multicycle value for a path from clkA to clkB?

20

Problem: Hierarchy and budgeting

• Maintain consistent constraints across hierarchy

• Block-level constraints
must be automatically generated
from full-chip constraints

• Min delays (hold) are as important as max delays

• Use default budgets, or simple slack allocation

• Accurate clock latencies are critical

• This is really hard

21

Problem: Hierarchy and promotion

• Block-level constraints must be promoted to full-chip
example: IP block with supplied block-level path exceptions

• Must automate this process

• “Identical” blocks may have different constraints
example: multiple copies of CPU, or IO interface
perhaps different modes, with different path exceptions
perhaps operating at different voltages

22

Example: extract clock latencies

Given a netlist with propagated clocks,
how to describe the equivalent ideal clock timing?

What we want is a Tcl file that looks like this:
########## cpuA_clk
set clock_source_latency(cpuA_clk:SLOW:early:rise) 1.987
set clock_source_latency(cpuA_clk:SLOW:late:rise) 2.305
set clock_source_latency(cpuA_clk:SLOW:early:fall) 1.959
set clock_source_latency(cpuA_clk:SLOW:late:fall) 2.272
set clock_network_latency(cpuA_clk:SLOW:early:rise) 1.228
set clock_network_latency(cpuA_clk:SLOW:late:rise) 1.405
set clock_network_latency(cpuA_clk:SLOW:early:fall) 1.257
set clock_network_latency(cpuA_clk:SLOW:late:fall) 1.438
set clock_global_skew(cpuA_clk:SLOW) 0.187

Then source this into Design Compiler, PrimeTime…

23

PrimeTime Tcl script
to extract clock latencies

foreach clock that is propagated and has a defined source
get source latency attributes
print source latency values
foreach register using this clock

find the max delay critical path to this capture register
get capture clock latency => total early latency
network early latency = total early – source

find the min delay critical path to this capture register
get the capture clock latency => total late latency
network late latency = total late – source

simple statistics on all network latency values
print network latency values
print global skew

24

Summary

Our goals:

• A methodology/flow which is
automated
flexible
consistent

• Repeatable, reliable results from our tools

• Manually edit and maintain constraints in one place:
full-chip PrimeTime Tcl scripts

• Methodology which is not design-specific

25

Thank you

• Mark Sprague, AMD

• Jerry Frenkil, Sequence Design

• Many previous clients for examples, good and bad…

26

Questions?

