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ABSTRACT

The phenomenon of metastability is inherent in clocked digital logic. Many techniques have been 
presented for minimizing metastability, both for crossing clock domains, and for handling 
asynchronous inputs. Some of these “best practices” have unexpected weaknesses and must be 
used carefully, particularly at smaller process nodes. This paper will explore these shortcomings 
and suggest alternative schemes that are more robust. A PrimeTime methodology for verifying 
multi-clock designs will be presented.
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1. Preface
What do the following products have in common?

• LINC
• DEC PDP-11/45
• DEC PDP-15
• Space Shuttle PASS
• AMD Am29000
• AMD 9513
• AMD 9519
• Zilog Z-80 SIO
• Intel 8048
• Intel 8202
• Intel 8085
• Honeywell 516 / ARPANET IMP
• Synopsys DW04_sync

They all suffered from synchronizer failures due to metastability [9][10][28][43][49][51][54][57]
[59][61].

2. Introduction and review
The phenomenon of metastability is inherent in clocked digital logic. Every bistable device will 
have two stable states (hence the name bistable) and also a third metastable state. If the device 
enters its metastable state, it will stay there for an indeterminate and unbounded length of time 
before eventually transitioning into one of the stable states.

Digital latches and flip-flops are bistable devices that can store a one or zero (the two stable 
states) but may also enter their metastable state under marginal triggering conditions if the 
specifications of the cell are violated (e.g., input setup time, input hold time, clock slew rate, 
power supply voltage, clock pulse width)1. Since the latch (or flip-flop) will stay metastable for 
an indeterminate time, your system has by definition failed its timing requirements.

Physics dictates that you cannot eliminate metastability. However you can minimize its effects 
and reduce the probability of failure by isolating the asynchronous inputs using a synchronizer 
circuit. The synchronizer conditions the input into a known relationship with the system clock.

Synchronizer circuits were in use by 1946 [26] and the first discussion of metastability in digital 
logic was by Lubkin in 1952 [46]. Synchronization and metastability has remained a fertile and 
sometimes controversial topic for research ever since [11][14–18][25].
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2.1. The basics

In universities today, electrical engineering and computer science undergrads are usually taught 
about metastability and synchronizers in one lecture of one class. The lecture typically goes 
something like this [30][44][59–62].

Consider the simple D latch in Figure 1.

Q

/Q

M1

M2

D

CLK

             

CLK

D

tsetup

 Figure 1: D latch Figure 2: D latch waveform

Initially the data D is low and clock CLK is high. The latch is transparent and thus Q is low and
/Q is high. Now assume D goes high just before CLK goes low. What happens? At first M1 will 
transition low causing output Q to head towards high, but then M1 will transition back to high 
because CLK has just gone low. If the overlap between D and CLK is sufficiently small, M1 and 
M2 can both be high and output Q may not yet have reached a high state.

At this point because M1 and M2 are high they cannot have any further effect on the outputs. 
The final outcome for Q and /Q is determined solely by the cross-coupled gates.

This situation is now similar to the cross-coupled inverters in Figure 3. The steady-state DC 
transfer curves for each inverter are shown in Figure 4.

INV1

INV2

BA

                    

 Figure 3: Cross-coupled inverters Figure 4: Transfer curves for
  cross-coupled inverters
  (from Zhou [62] figure 2.6)

SNUG Silicon Valley 2014 4 Synchronization and Metastability



What are the possible steady-state behaviors for these cross-coupled inverters? We can determine 
this graphically from Figure 4; it is simply the points at which the two transfer curves intersect. 
Surprisingly there are not two but three such points. There are two stable states at 
A=0, B=1 and A=1, B=0. The third point is A=B=Vm where Vm is not a legal logic level. This 
third intersection represents a metastable state. This is a valid solution to the transfer equations; 
the voltages are self-consistent and the latch can theoretically remain in this state indefinitely. 
However any noise or other disruption will tend to drive the latch toward one of the stable states.

The behavior of the cross-coupled inverters can be likened to a perfectly smooth ball and hill, as 
shown in Figure 5 [34][59].

Figure 5: Mechanical analogy of bistable circuit
(from Wakerly [59] figure 5)

If we drop a ball from overhead, it will probably immediately roll down to one side of the hill or 
the other. However what if it lands exactly on the top? The ball may precariously balance there 
for a while before some random force perturbs it and starts it rolling down one side or the other. 
If you forcefully kick the ball toward the right, it will go over the hill and down to the opposite 
state on the right side. If instead you kick it weakly it will roll up the hill a bit, and then back 
down to the left where it started. If you kick the ball just right then it may reach the top and 
balance there for a while, before falling back to one side or the other.

Like the ball at the top of the hill, the cross-coupled inverters may stay in the metastable state for 
an unpredictable length of time before nondeterministically transitioning into one or the other of 
the two stable states.
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At this point the lecturer may show some pictures of flops caught in the act of metastability.

Figure 6: Sampling oscilloscope trace showing Q and /Q of flip-flop
with clock and data inputs changing simultanteously

(from Chaney and Molnar [15] figure 1)

2.2. The theory

Now the lecture continues with a mathematical analysis of metastable behavior. How often does 
metastability occur? And once it occurs, how long does it last? We will skip over the differential 
equations and get right to the results [19][30][38][42][53][58].

Consider our D latch some time tR after CLK has gone low. What is the probability that the latch 
is still in the metastable state? It is the product of two probabilities: first, the probability of 
entering the metastable state in the first place; and second, the probability that the metastable 
state will persist for at least time tR [30].

 
P(metastable) = P(enter metastability) × P(still in state after tR)

= PE × PS
PF = PE × PS

 (1)

PF is the probability of failure, in other words, the latch went metastable and is still metastable 
even though we have waited for time tR.

SNUG Silicon Valley 2014 6 Synchronization and Metastability



To calculate the probability of entering metastability, we define a short window T0 around the 
clock’s sampling edge, such that if data changes during that window, then the latch will become 
metastable. Think of it as “setup-and-hold time” for metastability [30].

Assuming the data can arrive at any time during the clock period tc, what then is the probability 
that the data happens to arrive during T0? It’s simply the fraction of the clock period that is 
occupied by T0, which is

 PE =
T0
tc

 (2)

or if fc is the clock frequency

 PE = fcT0  (3)

To calculate the probability that the latch will remain metastable for a certain period of time, first 
we notice in Figure 4 that at metastability the gates are operating in their linear region, thus any 
initial small voltage difference in the cross-coupled gates will be exponentially amplified by the 
gain of the gates. If the latch is metastable at time 0, then the probability that the latch is still 
metastable after some time tR is

 PS = e<tR/o  (4)

where time constant τ is roughly the inverse of the gain of the gates and tR is the resolution time.

Then we have

 PF = PEPS = fcT0e<tR/o  (5)

Assume our input D is changing at an event rate of fd then the failure rate λ is this event rate 
multiplied by the failure probability PF for an individual event

 h = fd PF = fd fcT0e<tR/o  (6)

and the mean time between failures is defined as the inverse of the failure rate

 MTBF =
1
h
=

etR/o

fd fcT0
 (7)
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2.3. The synchronizer

The lecture continues with some basic recommendations.

We can minimize the impact of metastability by using a synchronizer to isolate the offending 
signal. The simplest synchronizer is a single flip-flop:

ASYNCIN

CLK

SYNC
SYNCHRONOUS

SYSTEM

Figure 7: Simple synchronizer

This can work, however it’s difficult to guarantee that the flop will have sufficient time to resolve 
the metastability. The recommended solution is to give the flop an entire clock period to settle:

ASYNCIN

CLK

SYNCMETA
SYNCHRONOUS

SYSTEM

Figure 8: Basic two-flop synchronizer

Net META drives nothing but the second flop. Be careful with loading on these signals. If net 
META is heavily loaded, the resolution time will be reduced, and MTBF will get worse.

Do not synchronize the same signal in more than one place. In Figure 9 it is possible for one flip-
flop to resolve the metastability to 0 while the other resolves to 1.

ASYNCIN

CLK

SYNC2META2

SYNCHRONOUS
SYSTEM

SYNC1META1

Figure 9: Broken synchronizer—DO NOT BUILD THIS

META1-SYNC1 and META2-SYNC2 can have different ideas about the value of ASYNCIN. 
This is very bad! Instead, use a synchronizer like Figure 8 and run signal SYNC to multiple 
destinations.
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Do not attempt to synchronize multi-bit buses. Instead synchronize a single-bit control signal that  
indicates when the bus is stable and data is available:

Figure 10: Synchronizing a multi-bit bus
(from Kinniment [42] figure 7.1)

Be careful with pulses crossing clock domains. A single-clock pulse in a fast clock domain may 
not be sampled at all when synchronized by a slower clock domain. Rather, convert the pulse to a 
REQ transition in the transmit domain, and when the transition is received, convert it back to a 
pulse in the receiving domain [29].

2.4. The ubiquity of metastability

Finally the lecture ends with a reminder that metastability is unavoidable. It is an inherent part of 
clocked digital logic. As Wakerly [59] puts it, referring to the cross-coupled inverters:

If even the simplest sequential circuit is susceptible to metastable behavior, you can be 
sure that all sequential circuits are susceptible.

Thank you class!

3. The rest of the story
Gosh, that covers it all, right? I’ve got my MTBF equation and my two-flop synchronizer. 
Nothing else to learn, is there? Where’s my SystemVerilog manual? Let’s code!

Not so fast. Let’s consider what our example lecture left out, shall we?

3.1. Flop parameters

Where do you get τ and T0 for your flip-flop? It almost certainly will not be in your ASIC cell 
library databook.2 What’s a designer to do?
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Do you own your own fab? If so then run some test chips and probe your flops. You can build up 
rather simple test fixtures that will allow you to determine τ and T0. Make sure you characterize 
the cell over your full operating range [27][39].

Do you have netlists for your flops? Do you have transistor models for your technology? Do you 
have SPICE? There are techniques for running SPICE analysis that will allow you to extract the 
parameters you need [36][42][53][55].

Consider a simple D flip-flop:

D Q

CLK

            
tholdtsetup

CLK

D

Figure 11: D flip-flop and test waveform

By forcing the setup and hold times of the data input pulse to be arbitrarily small we should be 
able to force the flop into metastability.

Figure 12 shows SPICE results for a simple D flip-flop in 65nm at typical conditions. The 
internal nets of the master latch are labeled A and B like the cross-coupled inverters in Figure 3.
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Figure 12: SPICE results from D flip-flop master latch
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A very short hold time on the data input causes the master latch to enter its metastable state. 
Immediately after CLK rises the internal nodes A and B are fluctuating and have not yet reached 
a stable level. Eventually they have almost the same voltage as the latch enters the metastable 
state. The small ∆V between A and B is then exponentially amplified by the gain of the cross-
coupled gates, and finally the latch enters a stable state with Q driven high.

Time constant τ is defined as the inverse of the gain in the exponential region. By making a log-
normal plot of ∆V in this region we can directly measure τ as the slope of the line.

 0.001

 0.01

 0.1

 1

 250  300  350  400

V

ps

6V
et/o with o = 44ps

Figure 13: Log-normal plot of ∆V in exponential region

The voltage grows at an exponential rate given by

 6V2 = 6V1 u e
(t2<t1)

o  (8)

so then

 
o =

t2 < t1

ln £
¤
6V2
6V1

¥
¦

 (9)

and in this example

 
o =

420 ps < 220 ps

ln £
¤

0. 8V
0. 009V

¥
¦

= 44 ps
 (10)
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Here’s another method to derive τ. With the same D flop as before, use a large setup time, then 
vary the data hold time relative to CLK, and extract the resolution time from each SPICE run.3 
Here, resolution time is defined as the time from CLK rising to the master latch internal feedback 
node reaching a stable value (high or low). Figure 14 shows the expected results [53].

tmeta

CL
K 

to
 la

tc
h 

va
lid

 ti
m

e
data latched

data
NOT

latched

thold

latch delay

Figure 14: Time to latch valid versus data hold time

At the left side, the input data pulse has gone away well before the clock edge, and thus the latch 
holds its value. At the far right side, there is adequate hold time and the latch loads its new value 
quickly (i.e., with very short resolution time). Define tmeta as the hold time that causes the latch to 
go metastable. Around tmeta we see exponential behavior with greatly increasing resolution time. 
Figure 15 shows the results from SPICE.
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Figure 15: SPICE results with varying hold time
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Stucki and Cox [56] and Stoll [55] were among the first to describe this type of plot and 
Portmann [53] gives a very elegant graphical explanation and equations to define the behavior. 
See Figure 16.

Figure 16: Fitted exponential showing metastability parameters
(from Portmann [53] figure 2.9b)

Define δ as the metastability window such that if data transitions within δ then it will not be 
resolved within a given resolution time tr. Then the width of this window can be calculated for a 
given resolution time:

 b = T0e<tR/o  (11)

where τ is the time constant and T0 is the asymptotic width of the window with zero resolution 
time.4
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From our simulations we can calculate δ as the difference between the hold time and tmeta. Taking 
the absolute value of this difference allows both left and right sides of the data to be used. Now 
show our measured resolution times on a log-normal plot:

 0
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Figure 17: Log-normal plot of the same data

Again we can derive τ from the slope

 o = <
t2 < t1

ln £
¤
b2

b1

¥
¦

= <
250 ps < 0 ps

ln £
¤

0. 1 ps
30 ps

¥
¦

= 44 ps  (12)

and T0 is twice the x intercept

 T0 = 30 ps × 2 = 60 ps  (13)

There is very good agreement with the previous derivation of τ. Figure 18 shows the same data 
again on a normal plot but now with the exponential curves added.
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Figure 18: SPICE results with varying hold time, and exponential model for tR

The preceding required access to the internal nets of the latch. However the same analysis can be 
done by measuring just the Q output pin of the flop. In this case we only get the right side data; 
the left side is hidden as there is no visible change to Q. The curve has a similar shape:
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Figure 19: SPICE results with varying hold time
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The log-normal plot allows us to extracting τ and T0 as before

 o = <
t2 < t1

ln £
¤
b2

b1

¥
¦

= <
300 ps < 200 ps

ln £
¤

0. 2 ps
2 ps

¥
¦

= 43 ps  (14)

 T0 = 175 ps × 2 = 350 ps  (15)

Very close agreement with τ from the previous calculations. T0 is different because of the extra 
delay through the slave latch and output buffers.

This measured τ is from the master latch only. CLK was held high so the slave latch was 
transparent. By taking CLK low at just the right time we should be able to induce metastability in 
the slave and measure its τ also. Also note that τ for the overall flop is sensitive to the duty cycle 
of the clock [20].

This analysis only measured the CLK and Q pins of the flop; it did not require access to the flop 
internals. It may be possible to use this technique to measure physical devices in your lab.

Note that simulation techniques like those outlined here may not be sufficiently accurate to 
model long duration metastability, due to the limited resolution of the simulator and potential 
variations in τ [62]. It is a complex and tricky procedure to generate an accurate characterization 
[6][21][22]. Process variation has a significant effect on τ [63].

However you determine the metastability parameters τ and T0, make sure you analyze all your 
flip-flop types. Make sure you run the analysis for all possible operating conditions. Read 
carefully the available literature and research. Implore your library vendor to provide these 
parameters to you.
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3.2. Multiple synchronizers

How many bistable devices are there in Figure 21?

D Q

CLK

Figure 21: D flip-flop

Figure 21 has two bistable devices.

Recall that an edge-triggered flip-flop is implemented internally with two latches:

master latch slave latch

D Q

CLK

/CLK

CLK

/CLK

/CLK

CLK CLK

A B

/CLK

CLK /CLK

Figure 22: D flip-flop internal structure

The master latch samples D on rising CLK. The slave latch samples the output of the master 
latch (net B) on falling CLK. Each of these bistable latches can go metastable. The resolution 
time of each latch is half the clock period. There are two time constants τmaster and τslave. There are 
two metastability windows T0master and T0slave. There is propagation delay between the latches.

How do we analyze this structure? What does our MTBF equation look like now?

What matters to the system is not whether the master latch is metastable, but whether the slave 
latch is metastable, because that is what drives the output Q. Metastability in the master can 
propagate to the slave during the first half of the clock period, and additionally if the master 
resolves its value close to the clock falling edge then the transition of B can induce metastability 
in the slave.

The overall MTBF for an edge-triggered flip-flop typically will have the same form as 
Equation (7) however the parameters τ and T0 will be slightly different from the values for its 
component latches. Kinniment [42] gives a detailed analysis. Clock duty cycle also has an 
effect [20].
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Kinniment [42] discusses the clock back edge effect which can cause a significant increase in 
failure rates during the second half of the clock period. This is due in part to the propagation 
delay between the two latches.

3.3. Multiple synchronizers

How many synchronizers are there in Figure 23?

My SoC

Figure 23: Your state-of-the-art bleeding-edge chip

There might be thousands of synchronizers in a modern SoC. What does our MTBF equation 
look like now?

For an ensemble of N synchronizers we can sum the failure rates of the individual synchronizers 
to get

 MTBF(N ) =
1

N

n=1
Y

1
MTBFn

 (16)

Note that the worst-behaved synchronizer will dominate the calculation. Another way of putting 
this: adding many really good synchronizers to your design will not affect the overall MTBF 
much. However adding one really bad synchronizer can dramatically worsen your system 
MTBF.

If all the synchronizers are identical5 then Equation (16) simplifies [31] to

 MTBF(N ) =
etR/o

N fd fc T0
 (17)

This analysis assumes all the synchronizers have independent uncorrelated failure rates. Is this 
correct? If not, how should the equations be modified?

This analysis further assumes that a failure (i.e., unresolved metastability) in a given 
synchronizer is just as bad as a failure in any other synchronizer. Is this correct? Are some 
synchronizers in your system more important than others? If so, how should the equations be 
modified?
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3.4. Multiple synchronizers

How many synchronizers are there in Figure 24?

Figure 24: LAN party at DreamHack Winter 2011
(from ExtremeTech.com [2])

How many of your product will be sold? You don’t want any of them to fail, do you?

What does our MTBF equation look like now?
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3.5. Reliability and your definition of failure

Let’s leave MTBF aside for the moment, and consider probability and reliability and failure.

There are three problems you must solve [41]:

1. Specify what your reliability goals are for your product. Rather than MTBF of a single 
synchronizer, this will involve specifying the aggregate probability of failure of a large 
number of flip-flops. Consider these assumptions:

• We plan to sell K=100,000 of this chip
• Each chip contains N=1,000 synchronizers
• Each chip is expected to operate for five years
Now we can specify our reliability goals, for example:
• With probability 85%, not a single synchronizer out of the entire population of 108 will 

have a metastability failure during its operating lifetime
or perhaps
• Only 3% of our entire population of synchronizers will fail over the lifetime of the product
or perhaps
• During its operating lifetime, at most 25 of the synchronizers on any given chip will fail

2. Find the metastability parameters τ and T0 for each of your synchronizers, including layout 
parasitics

3. Write an equation to calculate the aggregate probability of failure in terms of τ, T0, clock 
frequency, data rate, lifetime of the system, etc.

Item 2. looks easiest but has some surprising subtleties (refer to previous Section 3.1).

Item 1. is the hardest because it requires your management to make a decision. Requiring 100% 
perfection is not an acceptable answer. Mother Nature won’t allow it. Failure is inevitable – we 
can only try to minimize its occurrence [37].

Item 3. goes something like this [40]:

Assuming our chip has a linear failure rate λ given by

 h =
1

MTBF(N )  (18)

then the reliability function R is defined as

 R(T ) = e<hT  (19)

This is the probability of no failure between time 0 and T. R(T) is also called the survival 
function.
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Thus the probability of failure within time 0→T is

 P( fail) = 1 < R(T ) = 1 < e<hT  (20)

To calculate the probability that all K chips we sold will survive (not fail) for time 0→T, just 
multiply the individual probabilities that each one will survive:

 

P(no fail in time 0 A T ) =
K

i=1
W Ri(T )

=
K

i=1
W e<hT

= £
¤
e<hT ¥

¦

K

= e<hKT

 (21)

To calculate the probability of no more than M failures from our population of K chips:

P() M failures in time 0 A T ) =
M<1

i=0
Y

¨
©
ª
KCi u

£
¤
1 < e<hT ¥

¦

i

u £
¤
e<hT ¥

¦

K<i¬
­
®

 (22)

where the binomial coefficients are given by

 KCi =
K !

i! (K < i)!  (23)

But don’t take my word for it. Do some research and figure out the equations for yourself.
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4. Recommendations
Recall that our equation for MTBF of one synchronizer is

 MTBF =
etR/o

fd fcT0
 (24)

and for our entire chip is

 MTBF(N ) =
1

N

n=1
Y

1
MTBFn

 (25)

where

 MTBF = mean time between failures (sec), this is the inverse of the failure rate λ

 tR = resolution time, the time after the clock edge that output data is needed (sec)

 τ = time constant of the latch (sec)

 fd = data arrival rate (Hz)

 fc = clock sampling rate (Hz)

 T0 = metastability window of the latch (sec)

 N = number of synchronizers in the chip

Let’s consider each parameter and how it can be used to improve MTBF.

4.1. tR

Bigger is better.

This is the synchronizer resolution time. This is how long you are willing to wait for any 
metastability to resolve itself.

Try and wait longer. Use a slower clock. Use a divided-down clock. Minimize the required setup 
of the following flop. Minimize the load on the output of the synchronizer flop, including the 
parasitic capacitance.

Improving this parameter is very beneficial because it affects the exponent.
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4.2. τ

Smaller is better.

This is the synchronizer time constant, which is approximately the inverse of the small-signal 
amplifier gain around the cross-coupled gates of the latch.

Compare τ for all your flops and pick a better flop. In general this will be flops with higher 
power, faster CLK→Q delay, and the simplest logic (e.g., no reset, no scan, no input mux).

Note these characteristics (high power, faster, simple logic) are not requirements; rather they are 
just indications that the gain will most likely be higher. For example if the flop has all sorts of 
extra transistors implementing reset and scan, then it will probably not have as much gain as the 
equivalent simpler flop. In the absence of measured τ you can use these heuristics to hopefully 
pick a better flop.

Another way to improve τ is to perform a more accurate characterization of the flop you are 
using, including all parasitics. This hopefully will improve τ, or might not…

Improving this parameter is very beneficial because it affects the exponent.

Be aware that many factors can affect τ. Ginosar [30] reports that process variations, extreme 
temperatures, low supply voltages can increase τ by several orders of magnitude. This makes 
measurement and simulation of τ a challenging task, particularly at smaller geometries [6][21]
[22][62][63].

4.3. fd

Smaller is better.

This is the input data rate. It can be difficult to estimate the actual data rate for a particular 
synchronizer. Slowing the transmit clock will always help.

Sometimes you will see MTBF equations with a factor of 2 in the denominator:

 MTBF =
etR/o

2 fd fcT0
 (26)

This is because they are interpreting the data input waveform as a “clock”. A clock with 
frequency f has a signal transition rate of 2f. If you put a frequency counter on your data signal 
then you should multiply the measured “clock frequency” by 2 to get the data rate. Always think 
of this as data rate and you won’t be confused, and you won’t need the 2.

This has a linear effect on MTBF.
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4.4. fc

Smaller is better.

This is the clock sampling rate. Slower is better. In other words, a longer clock period is better. 
So use a slower clock, or use a divided-down clock.

Generally any change to fc will affect tR also.

This has a linear effect on MTBF.

4.5. T0

Smaller is better.

This is the synchronizer’s metastability window. This is much smaller than the minimum 
tsetup + thold for the flop [55]. T0 is related to the setup time and minimum voltage required for a 
valid output [53].

Compare T0 for all your flops and pick a better flop. In general, but not necessarily, this will be 
flops with smallest minimum specification for tsetup + thold. In the absence of measured T0 you can 
use this heuristic to hopefully pick a better flop. T0 is affected by the latch time constant, so a 
flop with better τ will most likely have better T0 also.

Another way to improve T0 is to perform a more accurate characterization of the flop you are 
using, including all parasitics. This hopefully will improve T0, or might not… And be aware of 
subtle interactions when trying to simultaneously derive T0 and τ [21].

This has a linear effect on MTBF.

4.6. N

Smaller is better.

This is the number of synchronizers on your chip.

Change your design to avoid synchronization. Check your system specification—perhaps some 
of your “asynchronous” clocks are actually coherent. Can you run some of your subsystems on 
the same clock?

Recall that synchronizers with very high MTBF will have little effect on the system MTBF. So 
improving (or removing) the worst ones will have the most benefit on your system.

This generally has a linear effect on overall MTBF.
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5. Common Fallacies
Let’s discuss some common fallacies and misconceptions about metastability and synchronizers.

5.1. MTBF

Our required MTBF is 10 years, because nobody owns a computer for longer than that.

MTBF is not the lifetime of your part!

MTBF is not service time!

MTBF is not operating time!

MTBF is not time to first failure!

MTBF is simply the inverse of failure rate λ. An MTBF of 10 years is the same as saying

In the first year we expect 10% of our chips to fail.

Using Equation (20) we calculate that an MTBF of 10 years is the same as saying

Within ten years, 62% of our chips will fail.

MTBF is not operating time!

Let’s calculate the MTBF of all SNUG attendees. We can model our population as 2,000 males6 
of age 35 years. The latest CDC life tables [3] give the probability of failure (death) over the next 
year as 0.001612. So we can expect

 2, 000 × 0. 001612 = 3. 22 failures in one year  (27)

Then

 MTBF(SNUG) =
2, 000 units × 1 year operation

3. 22 failures
= 621 years  (28)

The MTBF of SNUG attendees is over 600 years! And yet our lifetime will not be nearly that 
long.

MTBF is not the lifetime of your part!

MTBF is simply the inverse7 of failure rate λ [13].

For more about the misuse of MTBF see [50].
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5.2. Gray code

We use gray code for our buses. No problem.

Actually this could be a big problem.

The binary reflected code or gray code was invented by Frank Gray of Bell Labs [33]. The 
advantage of this coding is that only one bit of your multi-bit bus will change state for each 
change in value. So if you simply run each bit of the bus through its own synchronizer, we will 
always have a valid value, because on any given clock edge only one synchronizer can possibly 
go metastable [23], and whichever way that synchronizer resolves you’ll have a good value.

This seems very attractive for FIFO pointers, however be aware of these restrictions:

1. Gray code only works for value changes of ±1. If you make larger changes then this scheme 
will not work. Consider if you write a multi-word packet of data into a FIFO, and don’t want 
to signal the read side until the packet is complete. Now increment the pointer by the number 
of words in the packet. More than one bit will change in the pointer. Your gray code 
assumption is violated.

2. Gray code only works for 2n values. Consider a FIFO with 13 entries. What will happen 
when you wrap around? More than one bit will change.

3. Be careful with reset. You will have more than one bit change. Can your system handle this?
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Figure 25 shows the logic required to implement a gray code clock crossing for a FIFO pointer:

BINARY
TO

GRAY

GRAY
TO

BINARY

clkA clkB

Figure 25: M-bit bus clock crossing using gray code

Figure 26 shows the logic required to send an arbitrary binary value across:

clkA clkB

ACK

REQ

clkBclkA

Figure 26: M-bit bus clock crossing using binary code

For an M-bit bus, the gray code version required 2M additional flops, plus the binary-to-gray and 
gray-to-binary logic. On the other hand, the binary version requires 2M muxes8, about six flops 
to implement the two handshake synchronizers, and a small handful of gates to generate the 
REQ, ACK, and load enable signals. In almost all cases the binary version will have less logic.

In the binary version, the M-bit data value is stable when it is loaded into the destination clock 
domain, so there is no chance of metastability in those flops. The gray code version requires M 
synchronizers whereas the binary version has only two. Fewer is better.

It is possible to simply count in gray code, however generally you want binary values so you can 
do arithmetic on the pointers to calculate an ALMOST_FULL signal for the FIFO. Thus you 
must use binary counters, and then convert binary-to-gray and gray-to-binary. This extra logic is 
not needed by the binary version.

Since you need a standard methodology for sending arbitrary data buses across clock domains, 
why not just use it here [29]? Create a parameterized module to implement the logic of Figure 26 
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and use it throughout your design, including for all your FIFO pointers. There is really no need 
to have a special-case gray code synchronizer.

5.3. Related clocks

Of course these two clocks are asynchronous.

One of the fundamental assumptions of our MTBF calculation is that the clock and data are 
asynchronous. Recall that Equation (2) shows that the probability of entering metastability is the 
metastability window T0 expressed as a fraction of the clock period tc = 1/fc. However this only 
holds if the data event can appear anywhere in the sampling clock period with equal probability. 
In other words, the probability density function is constant across the clock period:
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Figure 27: Probability density function showing possible data arrival times
during sampling clock period, asynchronous clocks

But what if the clocks are related? If the clocks are derived from the same reference source 
(oscillator) then they are coherent clocks and the probability density function is not uniform [7].

Consider a data rate of 125MHz and clock sampling rate of 150MHz, where both clocks are 
derived from the same source. The frequencies of these two clocks are a fixed ratio; they are 
rational clocks. The data can only arrive at fixed locations in the clock period. The probability 
density function is a series of spikes [7].
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Figure 28: Probability density function for data rate fd = 125MHz and clock rate fc = 150MHz
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What does this do to our MTBF calculation? Depending on the phase difference, it’s possible for 
our data to always arrive during the metastability window, and we may see MTBF worsen by 
several orders of magnitude [7].

Understanding the clock relationship is critical to an accurate calculation of MTBF. Dally and 
Poulton [24] give an excellent discussion of various signal-clock relationships: synchronous, 
mesochronous, plesiochronous, periodic, asynchronous. They provide synchronizer designs 
appropriate for each condition. Also refer to the discussion by Ginosar [30].

Be very careful with your clock specifications. You may design a subsystem assuming two clock 
domains will be asynchronous, and then at the system level they end up being driven by coherent 
clocks. This can happen when a future chip reuses your subsystem and those designers are 
unaware of your clocking assumptions…

5.4. Flop selection

I’m using the flop that Design Compiler selected.

Design Compiler can do amazing and wonderful things, but picking the proper synchronizer flop 
is not one of them. Your synthesis tool is not thinking about metastability when it evaluates its 
cost function.

In particular, the absolute worst type of flop to use is a dynamic pass-gate flop:

D Q

CLK

CLK

/CLK

/CLK

Figure 29: Flip-flop implemented with pass gates

This is a nonrestoring flop. There are no cross-coupled gates! There is no amplification, τ is 
effectively infinite and there is no metastability resistance at all. Very bad choice for a 
synchronizer.

In general, the best choices will be flops with higher power, faster CLK→Q delay, and the 
simplest logic (e.g., no reset, no scan, no input mux). These tend to have the highest gain and 
thus smallest τ. But rely on these heuristics only if you must; measurement is always best.
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5.5. Basic two-flop synchronizer

One clock period is long enough to wait.

Not necessarily.

ASYNC IN

CLK

SYNC OUT

Figure 30: Basic two-flop synchronizer

There is nothing magical about the classic two-flop synchronizer. One clock period might not be 
enough resolution time tR to give you adequate MTBF. Your second flop might have large setup 
time, which further reduces tR. Your first flop may have bad τ and T0 parameters. Your layout 
may put excessive parasitic capacitances on the intermediate net. Your system may require very 
high reliability. And so on…

See Dally and Poulton [24], Kinniment [42] and Ginosar [29] for many interesting variations of 
this classic synchronizer. Careful analysis is the only way to be sure that your synchronizer will 
give sufficient protection against metastability.
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5.6. Multistage synchronizer

A two-flop synchronizer isn’t enough, so we use three. Maybe four. Five for sure.

ASYNC IN

CLK

SYNC OUT

Figure 31: Multistage synchronizer

It’s tempting to think that if two flops are good, then three (or more) must be better.

It’s tempting when our MTBF is too small, to simply add more flops to the synchronizer.

What is the probability that the second flop will become metastable, and still be metastable after 
time tR?

 P2(metastable) = P2(enter metastability) × P2(still in state after tR)  (29)

But the second flop will only enter metastability if the first flop is still metastable at the end of its 
resolution time:

 P2(metastable) = P1(enter metastability)
× P1(still in state after tR1

)
× P2(still in state after tR2

)

 (30)

Then we have

 MTBF =
etR1 /o1 u etR2 /o2

fd fcT01
 (31)

Assuming all flops have identical characteristics9 we can simplify this to

 MTBF =
e2tR/o

fd fcT0
 (32)

effectively doubling the resolution time.

The correct analysis of MTBF in a multistage synchronizer can be rather complex [5]. Each stage 
adds additional propagation delay which can decrease the overall resolution time. The reliability 
may be marginally reduced by back edge effects [42].
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A preferable alternative may be to use a normal two-flop synchronizer with a slower clock:

ASYNC IN

CLK / 2

SYNC OUT

Figure 32: Synchronizer with slow clock

This has the same latency of two clock periods, however each synchronizing latch stage now has 
more than twice the resolution time, because there is no additional propagation delay:

 MTBF =
e(tc+tR)/o

fd fcT0
 (33)

Rather than using a clock divider, you could gate the clock. Carefully consider the clock duty 
cycle. It may be better to have a high/low ratio of 3/1, giving the initial master latch at least 
3× the resolution time. This deserves further study.

If you must maintain the same throughput10 you can implement two of these synchronizers 
running on opposite phases of the slow clock, and combine the outputs at the end.

Do not use flops with load enables or input muxes. You must implement this by gating or 
dividing the clock, otherwise the metastable latch will try to reload itself through the input mux.

Slower clocks (divide-by-3, -4, etc.) can be used if even longer resolution time is needed.

5.7. Custom synchronizer cells

Our library group designed a special SYNC cell. I’m sure they know what they are doing.

This can be very beneficial if done correctly.

Some things to consider:

How many stages of latches did they implement? Why? Does the feedback loop have high 
enough gain? Is this a simple latch cell, or does it include complexity like reset and scan? Is there 
minimal delay between latch stages? Did they isolate the feedback loop from the output load? 
Did they minimize the propagation delay between stages?

Do you have a Liberty functional model? Do you have a corresponding test functional model? 
Do you have a scan model? Do you have a timing model? Do they all agree?

Does this library cell require any special treatment by any of your tools at any point during your 
flow? If so, are you willing to change and maintain your flow just to support this cell?
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Is this hand-instantiated in the RTL or inserted later? How do you prevent Design Compiler from 
replacing it with a functional equivalent during synthesis? During place and route? Are you sure 
it hasn’t been replaced?

Have you been provided with the metastability characteristics for this cell? Over the entire range 
of operating conditions? Is this based on simulation or actual silicon? Actual silicon from the 
current process node, or a previous one?

5.8. Design flow

Sure, we know where all the synchronizer flops are.
Fred maintains a list.

I think he’s got that file checked in.

This can be tricky.

Some designers use special dummy cells in their RTL to indicate signals that are crossing clock 
domains. Or, mark the synchronizer flops with special names, e.g., _sync suffix. Then various 
tools can subject these paths to special treatment—constraining delay, limit transition time, etc.

Alternatively you can use various formal checking and CDC tools to find and verify your clock 
crossings.

Be prepared to use a combination of approaches. If you are using the “dummy cell” technique, 
sure enough you will incorporate some IP that doesn’t use that scheme, or you use some RTL 
from that start-up you just acquired…

5.9. Design reuse

This module has been used before. It’s proven in silicon.

Many bad things can happen when you reuse a design. Make sure you haven’t violated any of the 
design assumptions regarding metastability.

What clock rates was this designed for? What process and library? What operating conditions?

What assumptions were made regarding clocks? Were they coherent or asynchronous?

What were their reliability goals?

Consider what will happen when someone reuses what you are designing right now. Are there 
any assumptions you are making regarding metastability and synchronization? Will future users 
know what they are? It’s all in the spec, right?
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5.10. Cell characterization

I trust the characterization of our library. Right down to the picosecond.

What is the precision of your library characterization? What is the accuracy of your library 
characterization? Do you know the difference between precision and accuracy? What is the 
accuracy of your timing analysis tool?

How much margin is included in your library characterization? How much margin is included in 
your fab process models? How much margin is included in your system specification?

We find ourselves in some weird corners of the design space when we investigate metastability. 
Funny things can happen.

Consider the setup tsu and hold thold parameters of a simple D flip-flop. For a given process corner 
and operating conditions these are specified as hard numbers. If you violate one of these 
parameters then you fail your timing analysis, right?

Let’s plot what happens when we input a pulse on the D pin of the flop.11

D Q

CLK

            
tholdtsetup

CLK

D

Figure 33: D flip-flop and test waveform

The flop will successfully capture the data as long as the pulse passes the minimum setup and 
hold parameters, and otherwise we predict it will fail. That’s what the cell characterization tells 
us. We expect a schmoo plot that looks like Figure 34.
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Figure 34: Expected schmoo plot for simple D flip-flop

Now, if you actually go and simulate this using SPICE, you get a slightly different result:
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Figure 35: Schmoo plot from SPICE modelling of simple D flip-flop, 65nm

The PASS region is not a simple rectangle at all. If you have a really large setup time then the 
hold time can be small. Alternatively if you have a large hold time then the setup can be small. It 
appears the flop data input requires a minimum pulse width, which makes some intuitive sense.
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Let’s investigate a bit further, and plot how the CLK→Q delay varies.

140
150
160
170
180

200

240

280

340

400

0 20 40 60 80 100

0

20

40

60

80

100

thold  (ps)

t se
tu
p  

(p
s)

CLK→Q  (ps)

FAIL

PASS

Figure 36: SPICE model contoured schmoo plot for simple D flip-flop, 65nm

As you approach the failure region the propagation delay begins to increase. The flop is nearing 
metastability. The flop is taking longer and longer to resolve its final value.

Given these results, I wonder what value your library has for minimum tsetup and thold? And 
what’s the maximum CLK→Q delay?

How much margin is included in your library characterization?

By the way, taking a horizontal slice through this dataset at a fixed tsetup gives us the flop analysis 
discussed in Section 3.1.
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5.11. Moore’s Law

I’m sure at 22nm all these problems will go away.

Actually, no. In fact it started to get worse at 65nm.

The synchronizer time constant τ is usually the same order of magnitude as FO4 (i.e., the typical 
gate delay with fanout of 4). As process technology scales, τ decreases along with the gate delays 
getting faster [62]. This keeps our synchronizer reliability manageable as we scale, even as our 
clock rates increase.

However this τ scaling appears to have stopped at about the 65nm node. Beer et al. [8] reports 
several measured and simulated values of τ for a variety of process nodes, indicating that τ is no 
longer scaling with FO4 and actually is getting worse at smaller nodes. Figure 37 plots the ratio 
of τ to FO4 and shows the degradation of τ with technology scaling.

κ = τ / FO4 

Figure 37: Simulation of κ = τ / FO4 at various nodes
(from Beer et al. [8] figure 19)

Characterize your process and your cells! Don’t rely on rules of thumb.

I wonder what sort of challenges FinFETs may cause?
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5.12. I just don’t believe it

I’ve never seen a synchronization failure. I don’t believe such a thing exists.

It’s not about belief. It’s about understanding.

These failures exist whether you believe it or not [25][45][47].

Synchronization failures are notoriously hard to quantify and capture, because they can leave no 
discernible evidence.

Imagine what a synchronizer failure might look like in your design. The best mental model is a 
stuck-at-0 or stuck-at-1 fault on your synchronizer flop—but the fault only lasts for one clock 
period! How can you test for that? How can you simulate what might happen?

If this flop controls the LSB of color value for a video pixel being displayed on an HDTV, you 
might never notice (or care). But what if this flop controls the main memory request signal from 
your CPU?

How often does this failure occur? If it’s several times a second then you will certainly notice in 
the lab during debug. If it’s only once in a great while, then you may not find out until significant 
sales have been made…

Beer et al. [7] reports of a failure in a commercial 40nm SoC. The relevant part of the design is 
shown in Figure 38. The clocks were coherent and at critical ratios caused excessive metastable 
events at S1.

Figure 38: Block diagram showing failing circuitry
(from Beer et al. [7] figure 20)

Using IREM to locate the problem and FIB microprobes to observe, the failure was captured as 
seen in Figure 39. The synchronizer output S1 shows an unexpectedly short pulse caused by 
metastability.
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Figure 39: Oscilloscope waveform showing synchronizer failure
(from Beer et al. [7] figure 21)

Blendics [10] also reports on several commercial failures.

Occasionally, brave engineers will write about their experiences with metastability 
failures [1][48][52].
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6. The rest of the story: Part 2

6.1. Example MTBF calculations

Using our example D flip-flop let’s calculate the MTBF for a two-flop synchronizer.

Let’s assume the following:

 τ = 44 ps (from our SPICE simulation)

 T0 = 350 ps (from our SPICE simulation)

 fc = 600 MHz (nice fast design)

 fd = 125 MHz

 tR = 1/fc – setup and propagation delay = 1667 ps – 400 ps = 1267 ps

Assuming 400 ps of setup and propagation delay between the flops, the calculation is then

 MTBF =
etR/o

fd fcT0

=
e

1267 ps
44 ps

(125 u 106 Hz) × (600 u 106 Hz) × (350 u 10<12 sec)

= 122 u 103 sec
5 34 hours

 (34)

Our MTBF is 34 hours. In less than 2 days operating time, 62% of our flops like this will fail. I 
imagine we would notice this in the lab.

Now let’s modify our synchronizer to use a divided-by-two clock. Our resolution time is now 
more than doubled to

 tR = 2 × (1/fc) – setup and prop delay = 2 × (1667 ps) – 400 ps = 2934 ps

and the calculation becomes

 MTBF =
e

2934 ps
44 ps

(125 u 106 Hz) × (300 u 106 Hz) × (350 u 10<12 sec)

= 6. 9 u 1021 sec
5 220 trillion years
5 16, 000 × age of the universe

 (35)

Such is the power of the exponential.
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6.2. Methodology for constraining synchronizers

Consider our basic synchronizer:

flop1 flop2flop0 net0 net1

clkA clkB

Figure 40: Schematic of synchronizer

We need to create a set of constraints for our flow: Design Compiler (maybe), IC Compiler 
(definitely), PrimeTime (most definitely).

The physical clocks clkA and clkB are defined elsewhere, and they will have 
set_false_path or set_clock_group applied such that there is no constrained timing 
path between flop0 and flop1.

The first step is to find all the synchronizers. There are many possible ways:
• In your RTL put a dummy cell on net0 so you can find it easily

• In your RTL have a special name pattern for synchronizer flops like flop1

• In your RTL instantiate a special SYNC cell from your library
• Use a CDC tool to locate all synchronizers
• Use a custom PrimeTime script to locate nets on unconstrained paths
• All of the above

What you want to end up with is an automatically-generated list of synchronizers. For each 
synchronizer our list should recite the cellnames flop0, flop1, netnames net0, net1, and 
the clock pinnames flop0/CK, flop1/CK. With those names and a bit of Perl we can create 
an SDC file to constrain the synchronizer. This SDC file must be automatically generated—you 
don’t want to maintain such a thing by hand. However you only need to regenerate it when the 
netlist changes; for much of your STA work this will be unchanged [32] and won’t add any time 
to your implementation or STA flow.

Zimmer [64] has a method to dynamically generate the appropriate constraints from inside 
PrimeTime. But I don’t mind generating this SDC file once in a while. And then it can be used 
for tools other than PrimeTime.

SNUG Silicon Valley 2014 41 Synchronization and Metastability



What constraints go in this synchronizer SDC file? Here are some suggestions:12

create_clock -name sync_launch_clock  [get_pins flop0/CK]
create_clock -name sync_capture_clock [get_pins flop1/CK]
set_false_path -to   [get_clock sync_launch_clock]
set_false_path -from [get_clock sync_capture_clock]

With the proper set_clock_group we now have a timing constraint from flop0 to flop1. 
Be sure to select reasonable clock periods.

set_max_transition [get_net net0]
set_max_transition [get_net net1]
set_max_capacitance [get_net net1]

We want these nets to have reasonably fast edges. We want net1 to be short and lightly loaded.

There will already be a timing constraint between flop1 and flop2 because they have the 
same physical clock. However flop1 is a synchronizer flop. We want net1 to be short and 
lightly loaded to give more resolution time to flop1. How can we fool our implementation 
tools into making sure this happens? A common solution is to set a custom placement group that 
keeps the flops together. Another way would be to backannotate a very long CLK→Q delay onto 
cell flop1. This could be done with a special SDF file, also automatically generated.

Note we also need to constrain any data flops that this synchronizer controls (for example, 
nets data[n:0] in Figure 41). Similar techniques can be used to find and constrain these 
paths.

clkA clkB

ACK

REQ

clkBclkA

data[n:0]

Figure 41: Multibit data crossing clock domains
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6.3. Methodology for constraining managers

After reading this far, perhaps you suddenly realize that your current methodology for handling 
metastability and synchronization may be fatally flawed and dangerously inadequate. What shall 
you do? How can you convince your company’s management that your methodology needs to be 
updated?

This is a big problem, because making any changes could imply that your current methodology 
must be wrong, and all your existing products are just time bombs waiting to fail in the field. 
Ouch. This is not something that you or your managers will want to consider.

Here are some suggested phrases you can use to try and make these changes more palatable:

Our new chips are more complex, with more clocks, and many more clock domain crossings.

Metastability seems to be getting worse below 65nm. τ may no longer scale with process.

Running at higher clock rates makes this problem deserving of more careful study.

New process features (e.g., FinFETs) make it prudent to review our methodology.

Focus on your new designs, rather than your old ones!

6.4. Why metastability is a Special Problem

Charles E. Molnar, one of the first to recognize metastability as a serious issue worthy of study, 
had the following to say [54] about why metastability is a Special Problem:

• Metastability breaks most of the conceptual and computational tools
that we use from day to day (e.g., binary or two-state circuits)

• Metastability defies careful and accurate measurements

• Metastability can produce failures that leave no discernable evidence

• Metastability can cause failures in systems whose software is “correct”
and whose hardware passes all conventional tests

• Metastability involves magnitudes of time and voltage far removed
from our daily experience
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7. Conclusions
Synchronizer design is a very deep and subtle art, with many counterintuitive features. To be 
successful you must be willing to put in a lot of work. To truly understand metastability and 
synchronization you may need to be familiar with:

• front-end flow • back-end implementation
• digital design • statistics
• analog design • probability
• cell library design • combinatorics
• library characterization • design for test
• reliability engineering • fault simulation
• high-speed lab techniques • marketing
• risk evaluation • sales forecasting
• data presentation • human psychology

Remember, you cannot achieve 100% synchronizer reliability, so how much is enough? Consider 
what is the probability of a sea-level cosmic ray causing a bit flip in one of your flip-flops or 
SRAM cells. Are you willing to accept that much risk?

Nevertheless, do not despair! Help is here. You are now empowered!

• Avoid the Fallacies (see Section 5)

• Follow the Recommendations (see Section 4)

You cannot prevent metastability—but you can manage it.
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