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Preface
or, wisdom from the experts
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What do these have in common?

• LINC

• DEC PDP-11/45

• DEC PDP-15

• Space Shuttle PASS

• Zilog Z-80 SIO

• Honeywell 516
ARPANET IMP

• AMD Am29000

• AMD 9513

• AMD 9519

• Intel 8048

• Intel 8202

• Intel 8085

• Synopsys DW04_sync
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What do these have in common?

• LINC

• DEC PDP-11/45

• DEC PDP-15

• Space Shuttle PASS

• Zilog Z-80 SIO

• Honeywell 516
ARPANET IMP

• AMD Am29000

• AMD 9513

• AMD 9519

• Intel 8048

• Intel 8202

• Intel 8085

• Synopsys DW04_sync

All of these had synchronizer failures!
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Introduction and review
or, what you learned as an undergrad EE student
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Simple D latch
Bistable circuit
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Cross-coupled inverters
Simple D latch after CLK goes low — Bistable circuit

INV1

INV2

BA



SNUG 2014 9

INV1

INV2

BA

Two stable solutions
One metastable solution

[from Zhou 2008 fig. 2.6]
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Two stable solutions
One metastable solution

[from Wakerly 1987 fig. 5]
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Metastability in a D flip-flop
Sampling oscilloscope trace showing Q and /Q

[from Chaney and Molnar 1973 fig. 1]
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P(metastable) = P(enter metastability) × P(still in state after tR)
= PE × PS

PF = PE × PS

Probability

PE = fcT0

PF = PEPS = fcT0e−tR/τ

PS = e−tR/τ

λ = fd PF = fd fcT0e−tR/τ
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Mean time between failures

MTBF =
etR/τ

fd fcT0
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Guidelines from your professor

ASYNC IN

CLK

SYNC OUT

• Use two flops to build a synchronizer

• No logic in between the flops

• ASYNC IN signal must be driven from a flop (clean edge)

• Synchronize a signal at only one point

• Do not synchronize multi-bit buses
– instead, synchronize a single-bit control signal,

that indicates when the bus is stable
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The rest of the story
or, things you didn’t learn as an undergrad EE student
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How many bistable devices?
Edge-triggered D flip-flop

D Q

CLK
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Two latches

• τ for flop depends on τ for each latch, clock duty cycle, 
propagation delay between latches, process variation…

D flip-flop internal structure

master latch slave latch

D Q

CLK

/CLK

CLK

/CLK

/CLK

CLK CLK

A B

/CLK

CLK /CLK
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How many synchronizers?

My SoC



SNUG 2014 19

MTBF for N synchronizers 

MTBF(N ) =
1

N

n=1
Σ

1
MTBFn

MTBF(N ) =
etR/τ

N fd fc T0
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How many synchronizers?

[from ExtremeTech.com 2011]
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Reliability and failure

1. Specify reliability goals for your product
– what % failures are acceptable over product lifetime?

2. Find metastability parameters τ , T0 for all synchronizers

3. Write an equation to calculate probability of failure
– sales volume
– lifetime of system
– τ and T0
– clock frequencies
– data rates
– resolution times

Things you need to do



SNUG 2014 22

Example reliability goal

• Given:
– we plan to sell 100,000 of this chip
– each chip contains 1,000 synchronizers
– each chip is expected to operate for 5 years

• Then your reliability goal might be:

With probability 85%,
not a single synchronizer out of the entire population of 108
will have a metastability failure during its operating lifetime
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Where to get τ and T0?

• Provided by library / fab vendors

• Measurement from actual silicon
– tricky high-speed lab techniques

• Simulation
– do you have SPICE?
– do you have process models?
– do you have netlists for your library cells?

You need metastability parameters for every flip-flop



SNUG 2014 24

Simulation setup
Simple D flip-flop

D Q

CLK
tholdtsetup

CLK

D
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SPICE results
D flip-flop master latch, very small thold time
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Another simulation technique
Multiple runs: fixed setup time, vary the hold time
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SPICE results
Fixed setup time, vary the hold time
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Fit model to SPICE results

δ = T0e−tR/τ

[from Portmann 1995 fig. 2.9b]

δ is the metastability window
for a given resolution time tR
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Extract model from SPICE results
Slope is τ, intercept is T0 /2
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SPICE results and model
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Recommendations
or, how to improve your reliability
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How to improve your reliability

tR = resolution time (s)

τ = time constant (s)

T0 = metastability window (s)

fd = data arrival rate (Hz)

fc = clock sampling rate (Hz)

N = number of synchronizers 
in your system

MTBF =
etR/τ

fd fcT0
MTBF(N ) =

1
N

n=1
Σ

1
MTBFn
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Common fallacies
or, misconceptions your co-workers may have
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Common fallacies

“Our required MTBF is ten years,
because nobody owns a computer

for longer than that.”

Mean time between failures
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Mean time between failures

After MTBF years,
how many of your systems have failed?
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Mean time between failures

After MTBF years,
how many of your systems have failed?

63%
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What is MTBF of SNUG attendees?

• Model our population as 2,000 males age 35 years
• Probability of failure (death) over the next year is 0.001612
• So we can expect

2,000 × 0.001612 = 3.22 failures in one year

MTBF(SNUG) = (2,000 units x 1 year operation)/3.22 failures
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What is MTBF of SNUG attendees?

• Model our population as 2,000 males age 35 years
• Probability of failure (death) over the next year is 0.001612
• So we can expect

2,000 × 0.001612 = 3.22 failures in one year

MTBF(SNUG) = (2,000 units x 1 year operation)/3.22 failures

621 years
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Mean time between failures?

• MTBF is not the lifetime of your part!

• MTBF is not service time!

• MTBF is not operating time!

• MTBF is not time to first failure!

MTBF is the inverse of failure rate λ
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MTBF is inverse of failure rate

If we say

then our failure rate is

We expect 10% to fail every year

λ =
1

MTBF
=

1
10 years

= 0. 10
1

year

MTBF = 10 years
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Common fallacies

“Of course these two clocks are 
asynchronous.”

Coherent clocks
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Asynchronous clocks

• Fundamental assumption of our MTBF calculation
– data input and sampling clock are completely asynchronous
– data can arrive at any time during the sampling clock period
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Coherent clocks
• If the clocks are coherent then

– clocks are ultimately sourced from the same oscillator
– data will arrive at predictable locations in the clock period

– these locations might coincide with the metastability window…

• MTBF can worsen by several orders of magnitude

 0  0.2  0.4  0.6  0.8  1

pr
ob

ab
ilit

y

t / tc  =  t × fc



SNUG 2014 45

BLOCK A

BLOCK B

CDC

clkA

clkB

Asynchronous clocks?
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BLOCK A

BLOCK B

CDC

OSC1
f1

clkA

clkB

Synchronous clocks
Same source, same frequency, same phase
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BLOCK A

BLOCK B

CDC

OSC1
f1

clkA

clkB

Mesochronous clocks
Same source, same frequency, different phase
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BLOCK A

BLOCK B

CDC

OSC1
f1

clkA

clkB

÷ q

÷ p

Rational clocks
Same source, rational frequency
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BLOCK A

BLOCK B

CDC

OSC1
f1

OSC2
f1

clkA

clkB

Plesiochronous clocks
Different source, same frequency
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BLOCK A

BLOCK B

CDC

OSC1
f1

OSC2
f2

clkA

clkB

Asynchronous clocks
Different source, different frequency
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Common fallacies

“A two-flop synchronizer isn’t enough.
So we use three.

Maybe four.
Five for sure.”

Multistage synchronizer
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Multistage synchronizer

• Correct analysis of MTBF can be surprisingly complicated

• Each stage adds additional propagation delay
• Complex place-and-route constraints
• Reliability reduced by back edge effects
• Instead try a two-flop synchronizer with slower clock…

ASYNC IN

CLK

SYNC OUT

MTBF =
etR1 /τ1 ⋅ etR2 /τ2

fd fcT01
MTBF =

e2tR/τ

fd fcT0
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Example MTBF calculation

τ = 44 ps (from our SPICE simulation)

T0 = 350 ps (from our SPICE simulation)

fc = 600 MHz (nice fast design)

fd = 125 MHz

tR = 1/fc – setup and propagation delay
 = 1667 ps – 400 ps
 = 1267 ps

Two flip-flop synchronizer using our simple D flip-flop
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Example MTBF calculation
Two flip-flop synchronizer using our simple D flip-flop

MTBF =
etR/τ

fd fcT0

=
e

1267 ps
44 ps

(125 ⋅ 106 Hz) × (600 ⋅ 106 Hz) × (350 ⋅ 10−12 sec)

= 122 ⋅ 103 sec
≈ 34 hours
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Example MTBF calculation

• Increase resolution time by using divided-by-two clock

• tR more than doubles! 

tR = 2 × (1/fc) – setup and propagation delay
 = 2 × (1667 ps) – 400 ps
 = 2934 ps

Two flip-flop synchronizer using our simple D flip-flop
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Example MTBF calculation
Two flip-flop synchronizer using our simple D flip-flop

MTBF =
e

2934 ps
44 ps

(125 ⋅ 106 Hz) × (300 ⋅ 106 Hz) × (350 ⋅ 10−12 sec)

= 6. 9 ⋅ 1021 sec
≈ 220 trillion years
≈ 16, 000 × age of the universe
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Common fallacies

“I’m sure at 22nm
all these problems will go away.”

Moore’s Law
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τ degradation effect
Worse synchronizer performance at smaller nodes

[Beer et al., ASYNC2010, fig. 19]

simulation of κ = τ / FO4
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Common fallacies

“I trust the characterization of our library.
Right down to the picosecond.”

Cell characterization
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Expected schmoo plot
Simple D flip-flop
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SPICE schmoo plot
Simple D flip-flop
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SPICE contoured schmoo plot
Simple D flip-flop
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Common fallacies

“We use gray code for our buses.
No problem.”

Gray code



SNUG 2014 64

Gray code

• Gray code is sometimes used for FIFO pointers

• Multibit bus has individual synchronizers on each bit

• Problems
– only works for value changes of ±1
– only works for 2n values
– requires more synchronizers
– requires more logic

• Design reuse may disrupt your careful assumptions…
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Gray code requires more logic

BINARY
TO

GRAY

GRAY
TO

BINARY

clkA clkB

clkA clkB

ACK

REQ

clkBclkA

gray
code
method

binary
code
method
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Common fallacies

“I’ve never seen a synchronizer failure.
I don’t believe such a thing exists.”

I just don’t believe it
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It’s not about belief
It’s about understanding

• What does a synchronizer failure look like?

• How often does it occur?

• How critical is the signal?
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Metastability failure
40nm SoC

[from Beer et al. ASYNC 2013]
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Common fallacies

• MTBF

• Related clocks

• Gray code

• Flop selection

• Basic 2-flop synchronizer

• Multistage synchronizer

• Custom synchronizer cells

• Design flow

• Design reuse

• Cell characterization

• Moore’s Law

• I just don’t believe it
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Methodology for
constraining synchronizers
or, it’s a Synopsys conference so I’d better talk about tools
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Find all the synchronizers

• In your RTL, put a dummy cell on net0
• Have a special name pattern for sync flops like flop1
• Instantiate a special SYNC cell from your library

• Use a CDC tool to find all the synchronizers
• Use a custom PrimeTime script to locate CDC nets

• All of the above

flop1 flop2flop0 net0 net1

clkA clkB
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Automatically generate
a custom SDC file

• Constrain delay between flop0 and flop1
create_clock -name sync_launch_clock  [get_pins flop0/CK]
create_clock -name sync_capture_clock [get_pins flop1/CK]
set_false_path -to   [get_clock sync_launch_clock]
set_false_path -from [get_clock sync_capture_clock]

• Fast edges on nets
set_max_transition [get_net {net0 net1}]
set_max_capacitance [get_net {net0 net1}]

flop1 flop2flop0 net0 net1

clkA clkB
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Conclusions
or, your journey is just beginning
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Expertise in metastability

• front-end flow

• digital design

• analog design

• cell library design

• library characterization

• reliability engineering

• high-speed lab techniques

• risk evaluation

• design for test

• back-end implementation

• fault simulation

• data presentation

• statistics

• probability

• combinatorics

• marketing

• sales forecasting

• human psychology

or, things you need to know about
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You cannot prevent metastability
but you can manage it

• You are empowered!

• Avoid the Fallacies

• Follow the Recommendations
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Thank You
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Methodology for
constraining managers
or,
it may look like a technical problem,
but really it might be a people problem
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How to convince your company
to change its methodology

• Making a change can imply

– that your current methodology is broken

– that your current chips could fail

• This is unpleasant to contemplate!

• What to do?

This can be challenging!
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How to convince your company
to change its methodology

• Making a change can imply

– that your current methodology is broken

– that your current chips could fail

• This is unpleasant to contemplate!

• What to do?

Focus on your new designs, rather than your old ones

This can be challenging!
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Focus on your new designs

Our new chips are more complex,
with more clocks,

and many more clock domain crossings.

Metastability seems to be getting worse below 65nm.
τ may no longer scale with process.

Running at higher clock rates
makes this problem deserving of more careful study.

New process features (e.g., FinFETs)
make it prudent to review our methodology.


